本博文详细记录了IBM在网上公布使用spark,elasticsearch搭建一个推荐系统的DEMO。demo中使用的elasticsearch版本号为5.4,数据集是在推荐中常用movies data。Demo中提供计算向量类似度es5.4插件在es6.1.1中没法使用,所以咱们基于es6.1.1开发一个新的计算特征向量类似度的插件,插件具体详情见github,下面咱们一步一步的实现这个推荐系统:git
整个框架图以下:
es6
从图中咱们能够看出具体的操做流程是:github
安装完es,spark,下载es-hadoop插件,以及es安装计算矢量评分的插件,而后经过以下命令启动:框架
PYSPARK_DRIVER_PYTHON="jupyter" PYSPARK_DRIVER_PYTHON_OPTS="notebook" /home/whb/Documents/pc/spark/spark-2.4.0/bin/pyspark --driver-memory 4g --driver-class-path /home/whb/Documents/pc/ELK/elasticsearch-hadoop-6.1.1/dist/elasticsearch-spark-20_2.11-6.1.1.jar
from IPython.display import Image, HTML, display def get_poster_url(id): """Fetch movie poster image URL from TMDb API given a tmdbId""" IMAGE_URL = 'https://image.tmdb.org/t/p/w500' try: import tmdbsimple as tmdb from tmdbsimple import APIKeyError try: movie = tmdb.Movies(id).info() poster_url = IMAGE_URL + movie['poster_path'] if 'poster_path' in movie and movie['poster_path'] is not None else "" return poster_url except APIKeyError as ae: return "KEY_ERR" except Exception as me: return "NA" def fn_query(query_vec, q="*", cosine=False): """ Construct an Elasticsearch function score query. The query takes as parameters: - the field in the candidate document that contains the factor vector - the query vector - a flag indicating whether to use dot product or cosine similarity (normalized dot product) for scores The query vector passed in will be the user factor vector (if generating recommended movies for a user) or movie factor vector (if generating similar movies for a given movie) """ return { "query": { "function_score": { "query" : { "query_string": { "query": q } }, "script_score": { "script": { "source": "whb_fvd", "lang": "feature_vector_scoring_script", "params": { "field": "@model.factor", "encoded_vector": query_vec, "cosine" : True } } }, "boost_mode": "replace" } } } def get_similar(the_id, q="*", num=10, index="movies", dt="movies"): """ Given a movie id, execute the recommendation function score query to find similar movies, ranked by cosine similarity """ response = es.get(index=index, doc_type=dt, id=the_id) src = response['_source'] if '@model' in src and 'factor' in src['@model']: raw_vec = src['@model']['factor'] # our script actually uses the list form for the query vector and handles conversion internally q = fn_query(raw_vec, q=q, cosine=True) results = es.search(index, dt, body=q) hits = results['hits']['hits'] return src, hits[1:num+1] def get_user_recs(the_id, q="*", num=10, index="users"): """ Given a user id, execute the recommendation function score query to find top movies, ranked by predicted rating """ response = es.get(index=index, doc_type="users", id=the_id) src = response['_source'] if '@model' in src and 'factor' in src['@model']: raw_vec = src['@model']['factor'] # our script actually uses the list form for the query vector and handles conversion internally q = fn_query(raw_vec, q=q, cosine=False) results = es.search(index, "movies", body=q) hits = results['hits']['hits'] return src, hits[:num] def get_movies_for_user(the_id, num=10, index="ratings"): """ Given a user id, get the movies rated by that user, from highest- to lowest-rated. """ response = es.search(index="ratings", doc_type="ratings", q="userId:%s" % the_id, size=num, sort=["rating:desc"]) hits = response['hits']['hits'] ids = [h['_source']['movieId'] for h in hits] movies = es.mget(body={"ids": ids}, index="movies", doc_type="movies", _source_include=['tmdbId', 'title']) movies_hits = movies['docs'] tmdbids = [h['_source'] for h in movies_hits] return tmdbids def display_user_recs(the_id, q="*", num=10, num_last=10, index="users"): user, recs = get_user_recs(the_id, q, num, index) user_movies = get_movies_for_user(the_id, num_last, index) # check that posters can be displayed first_movie = user_movies[0] first_im_url = get_poster_url(first_movie['tmdbId']) if first_im_url == "NA": display(HTML("<i>Cannot import tmdbsimple. No movie posters will be displayed!</i>")) if first_im_url == "KEY_ERR": display(HTML("<i>Key error accessing TMDb API. Check your API key. No movie posters will be displayed!</i>")) # display the movies that this user has rated highly display(HTML("<h2>Get recommended movies for user id %s</h2>" % the_id)) display(HTML("<h4>The user has rated the following movies highly:</h4>")) user_html = "<table border=0>" i = 0 for movie in user_movies: movie_im_url = get_poster_url(movie['tmdbId']) movie_title = movie['title'] user_html += "<td><h5>%s</h5><img src=%s width=150></img></td>" % (movie_title, movie_im_url) i += 1 if i % 5 == 0: user_html += "</tr><tr>" user_html += "</tr></table>" display(HTML(user_html)) # now display the recommended movies for the user display(HTML("<br>")) display(HTML("<h2>Recommended movies:</h2>")) rec_html = "<table border=0>" i = 0 for rec in recs: r_im_url = get_poster_url(rec['_source']['tmdbId']) r_score = rec['_score'] r_title = rec['_source']['title'] rec_html += "<td><h5>%s</h5><img src=%s width=150></img></td><td><h5>%2.3f</h5></td>" % (r_title, r_im_url, r_score) i += 1 if i % 5 == 0: rec_html += "</tr><tr>" rec_html += "</tr></table>" display(HTML(rec_html)) def display_similar(the_id, q="*", num=10, index="movies", dt="movies"): """ Display query movie, together with similar movies and similarity scores, in a table """ movie, recs = get_similar(the_id, q, num, index, dt) q_im_url = get_poster_url(movie['tmdbId']) if q_im_url == "NA": display(HTML("<i>Cannot import tmdbsimple. No movie posters will be displayed!</i>")) if q_im_url == "KEY_ERR": display(HTML("<i>Key error accessing TMDb API. Check your API key. No movie posters will be displayed!</i>")) display(HTML("<h2>Get similar movies for:</h2>")) display(HTML("<h4>%s</h4>" % movie['title'])) if q_im_url != "NA": display(Image(q_im_url, width=200)) display(HTML("<br>")) display(HTML("<h2>People who liked this movie also liked these:</h2>")) sim_html = "<table border=0>" i = 0 for rec in recs: r_im_url = get_poster_url(rec['_source']['tmdbId']) r_score = rec['_score'] r_title = rec['_source']['title'] sim_html += "<td><h5>%s</h5><img src=%s width=150></img></td><td><h5>%2.3f</h5></td>" % (r_title, r_im_url, r_score) i += 1 if i % 5 == 0: sim_html += "</tr><tr>" sim_html += "</tr></table>" display(HTML(sim_html))
https://github.com/IBM/elasticsearch-spark-recommenderelasticsearch