1 torch.catcode
torch.cat((A, B), dim)
将两个tensor在指定维度进行拼接class
A = torch.zeros(2,3) B = torch.zeros(2,3) C = torch.cat((A,B), 0) ## shape [4,3] D = torch.cat((A,B), 1) ## shape [2,6]
2 torch.stack扩展
torch.stack((A, B), dim)
增长新的维度进行堆叠im
A = torch.zeros(1,3) B = torch.zeros(1,3) C = torch.stack((A,B), 0) ## [2, 1, 3] D = torch.stack((A,B), 1) ## [1, 2, 3] E = torch.stack((A,B), 2) ## [1, 3, 2]
3 torch.permute数据
A = A.permute(0, 2, 3, 1)
调整tensor的维度顺序,至关于更灵活的transpose移动
A = torch.zeros(32, 3, 18, 18) ## [32, 3, 18, 18] B = A.permute(0, 2, 3, 1) ##[32, 18, 18, 3]
4 tensor.contiguous view只能用在contiguous的tensor上。若是在view以前用了transpose, permute等,须要用contiguous()来返回一个contiguous copy。 eg:di
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
5 tensor.squeezeview
A = A.squeeze(dim)
去掉tensor的维度为1的维度,该维度能够经过参数dim指定,也能够不加参数,默认找到维度为1的维度而后去掉vi
A = torch.zeros(1, 18, 18) ## [1, 18, 18] B = A.squeeze(0) ## [18, 18]
6 tensor.unsqueezecopy
A = A.unsqueee(dim)
在tensor中增长一个新的指定维度,新维度放在指定位置 原来维度序列向两边移动
A = torch.zeros(2, 3, 4) ## [2, 3, 4] B = A.unsqueeze(0) ## [1, 2, 3, 4] C = A.unsqueeze(1) ## [2, 1, 3, 4] D = A.unsqueeze(2) ## [2, 3, 1, 4] E = A.unsqueeze(3) ## [2, 3, 4, 1]
7 tensor.expand
A = A.expand()
在指定维度上扩展数据, 该指定维度长度为1,不然报错。(此时扩展仅是建立新的视图,并不进行数据复制)
A = torch.zeros(2, 3, 1) ## [2, 3, 1] B = A.expand(2, 3, 3) ## [2, 3, 3]
8 tensor.clone() clone() 获得的tensor不只拷贝了原始的value,并且会计算梯度传播信息
b = a.clone()
9 tensor.copy_(src_tensor) 只拷贝src_tensor的数据到dst_tensor上,并返回self
a = torch.ones([3,4]) b = torch.zeros([3,4]) b.copy_(a)
10 生成特定尺度、特定数值的tensor
a = torch.Tensor(3,5).fill_(0) a = torch.full((3,5), 0, dtype=torch.IntTensor)