因为本人要开发 分布式日志系统,因此想总体下关于开源的日志系统node
1. 背景介绍linux
许多公司的平台天天会产生大量的日志(通常为流式数据,如,搜索引擎的pv,查询等),处理这些日志须要特定的日志系统,通常而言,这些系统须要具备如下特征:git
(1) 构建应用系统和分析系统的桥梁,并将它们之间的关联解耦;github
(2) 支持近实时的在线分析系统和相似于Hadoop之类的离线分析系统;web
(3) 具备高可扩展性。即:当数据量增长时,能够经过增长节点进行水平扩展。shell
本文从设计架构,负载均衡,可扩展性和容错性等方面对比了当今开源的日志系统,包括facebook的scribe,apache的chukwa,linkedin的kafka和cloudera的flume等。数据库
2. FaceBook的Scribeapache
Scribe是facebook开源的日志收集系统,在facebook内部已经获得大量的应用。它可以从各类日志源上收集日志,存储到一个中央存储系统 (能够是NFS,分布式文件系统等)上,以便于进行集中统计分析处理。它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案。后端
它最重要的特色是容错性好。当后端的存储系统crash时,scribe会将数据写到本地磁盘上,当存储系统恢复正常后,scribe将日志从新加载到存储系统中。服务器
架构:
scribe的架构比较简单,主要包括三部分,分别为scribe agent, scribe和存储系统。
(1) scribe agent
scribe agent其实是一个thrift client。 向scribe发送数据的惟一方法是使用thrift client, scribe内部定义了一个thrift接口,用户使用该接口将数据发送给server。
(2) scribe
scribe接收到thrift client发送过来的数据,根据配置文件,将不一样topic的数据发送给不一样的对象。scribe提供了各类各样的store,如 file, HDFS等,scribe可将数据加载到这些store中。
(3) 存储系统
存储系统实际上就是scribe中的store,当前scribe支持很是多的store,包括file(文件),buffer(双层存储,一个主储存,一个副存储),network(另外一个scribe服务器),bucket(包含多个 store,经过hash的将数据存到不一样store中),null(忽略数据),thriftfile(写到一个Thrift TFileTransport文件中)和multi(把数据同时存放到不一样store中)。
3. Apache的Chukwa
chukwa是一个很是新的开源项目,因为其属于hadoop系列产品,于是使用了不少hadoop的组件(用HDFS存储,用mapreduce处理数据),它提供了不少模块以支持hadoop集群日志分析。
需求:
(1) 灵活的,动态可控的数据源
(2) 高性能,高可扩展的存储系统
(3) 合适的框架,用于对收集到的大规模数据进行分析
架构:
Chukwa中主要有3种角色,分别为:adaptor,agent,collector。
(1) Adaptor 数据源
可封装其余数据源,如file,unix命令行工具等
目前可用的数据源有:hadoop logs,应用程序度量数据,系统参数数据(如linux cpu使用流率)。
(2) HDFS 存储系统
Chukwa采用了HDFS做为存储系统。HDFS的设计初衷是支持大文件存储和小并发高速写的应用场景,而日志系统的特色刚好相反,它需支持高并发低速率的写和大量小文件的存储。须要注意的是,直接写到HDFS上的小文件是不可见的,直到关闭文件,另外,HDFS不支持文件从新打开。
(3) Collector和Agent
为了克服(2)中的问题,增长了agent和collector阶段。
Agent的做用:给adaptor提供各类服务,包括:启动和关闭adaptor,将数据经过HTTP传递给Collector;按期记录adaptor状态,以便crash后恢复。
Collector的做用:对多个数据源发过来的数据进行合并,而后加载到HDFS中;隐藏HDFS实现的细节,如,HDFS版本更换后,只需修改collector便可。
(4) Demux和achieving
直接支持利用MapReduce处理数据。它内置了两个mapreduce做业,分别用于获取data和将data转化为结构化的log。存储到data store(能够是数据库或者HDFS等)中。
4. LinkedIn的Kafka
Kafka是2010年12月份开源的项目,采用scala语言编写,使用了多种效率优化机制,总体架构比较新颖(push/pull),更适合异构集群。
设计目标:
(1) 数据在磁盘上的存取代价为O(1)
(2) 高吞吐率,在普通的服务器上每秒也能处理几十万条消息
(3) 分布式架构,可以对消息分区
(4) 支持将数据并行的加载到hadoop
架构:
Kafka其实是一个消息发布订阅系统。producer向某个topic发布消息,而consumer订阅某个topic的消息,进而一旦有新的关于某个topic的消息,broker会传递给订阅它的全部consumer。 在kafka中,消息是按topic组织的,而每一个topic又会分为多个partition,这样便于管理数据和进行负载均衡。同时,它也使用了zookeeper进行负载均衡。
Kafka中主要有三种角色,分别为producer,broker和consumer。
(1) Producer
Producer的任务是向broker发送数据。Kafka提供了两种producer接口,一种是low_level接口,使用该接口会向特定的broker的某个topic下的某个partition发送数据;另外一种那个是high level接口,该接口支持同步/异步发送数据,基于zookeeper的broker自动识别和负载均衡(基于Partitioner)。
其中,基于zookeeper的broker自动识别值得一说。producer能够经过zookeeper获取可用的broker列表,也能够在zookeeper中注册listener,该listener在如下状况下会被唤醒:
a.添加一个broker
b.删除一个broker
c.注册新的topic
d.broker注册已存在的topic
当producer得知以上时间时,可根据须要采起必定的行动。
(2) Broker
Broker采起了多种策略提升数据处理效率,包括sendfile和zero copy等技术。
(3) Consumer
consumer的做用是将日志信息加载到中央存储系统上。kafka提供了两种consumer接口,一种是low level的,它维护到某一个broker的链接,而且这个链接是无状态的,即,每次从broker上pull数据时,都要告诉broker数据的偏移量。另外一种是high-level 接口,它隐藏了broker的细节,容许consumer从broker上push数据而没必要关心网络拓扑结构。更重要的是,对于大部分日志系统而言,consumer已经获取的数据信息都由broker保存,而在kafka中,由consumer本身维护所取数据信息。
5. Cloudera的Flume
Flume是cloudera于2009年7月开源的日志系统。它内置的各类组件很是齐全,用户几乎没必要进行任何额外开发便可使用。
设计目标:
(1) 可靠性
当节点出现故障时,日志可以被传送到其余节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;若是数据发送失败,能够从新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Best effort(数据发送到接收方后,不会进行确认)。
(2) 可扩展性
Flume采用了三层架构,分别问agent,collector和storage,每一层都可以水平扩展。其中,全部agent和collector由master统一管理,这使得系统容易监控和维护,且master容许有多个(使用ZooKeeper进行管理和负载均衡),这就避免了单点故障问题。
(3) 可管理性
全部agent和colletor由master统一管理,这使得系统便于维护。用户能够在master上查看各个数据源或者数据流执行状况,且能够对各个数据源配置和动态加载。Flume提供了web 和shell script command两种形式对数据流进行管理。
(4) 功能可扩展性
用户能够根据须要添加本身的agent,colletor或者storage。此外,Flume自带了不少组件,包括各类agent(file, syslog等),collector和storage(file,HDFS等)。
架构:
正如前面提到的,Flume采用了分层架构,由三层组成,分别为agent,collector和storage。其中,agent和collector均由两部分组成:source和sink,source是数据来源,sink是数据去向。
(1) agent
agent的做用是将数据源的数据发送给collector,Flume自带了不少直接可用的数据源(source),如:
text(“filename”):将文件filename做为数据源,按行发送
tail(“filename”):探测filename新产生的数据,按行发送出去
fsyslogTcp(5140):监听TCP的5140端口,而且接收到的数据发送出去
同时提供了不少sink,如:
console[("format")] :直接将将数据显示在桌面上
text(“txtfile”):将数据写到文件txtfile中
dfs(“dfsfile”):将数据写到HDFS上的dfsfile文件中
syslogTcp(“host”,port):将数据经过TCP传递给host节点
(2) collector
collector的做用是将多个agent的数据汇总后,加载到storage中。它的source和sink与agent相似。
下面例子中,agent监听TCP的5140端口接收到的数据,并发送给collector,由collector将数据加载到HDFS上。
1
2
3
|
host : syslogTcp(5140) | agentSink(
"localhost"
,35853) ;
|
一个更复杂的例子以下:
有6个agent,3个collector,全部collector均将数据导入HDFS中。agent A,B将数据发送给collector A,agent C,D将数据发送给collectorB,agent C,D将数据发送给collectorB。同时,为每一个agent添加end-to-end可靠性保障(Flume的三种可靠性保障分别由agentE2EChain, agentDFOChain, and agentBEChain实现),如,当collector A出现故障时,agent A和agent B会将数据分别发给collector B和collector C。
下面是简写的配置文件片断:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
agentA : src | agentE2EChain(
"collectorA:35853"
,
"collectorB:35853"
);
agentB : src | agentE2EChain(
"collectorA:35853"
,
"collectorC:35853"
);
agentC : src | agentE2EChain(
"collectorB:35853"
,
"collectorA:35853"
);
agentD : src | agentE2EChain(
"collectorB:35853"
,
"collectorC:35853"
);
agentE : src | agentE2EChain(
"collectorC:35853"
,
"collectorA:35853"
);
agentF : src | agentE2EChain(
"collectorC:35853"
,
"collectorB:35853"
);
|
此外,使用autoE2EChain,当某个collector 出现故障时,Flume会自动探测一个可用collector,并将数据定向到这个新的可用collector上。
(3) storage
storage是存储系统,能够是一个普通file,也能够是HDFS,HIVE,HBase等。
6. 总结
根据这四个系统的架构设计,能够总结出典型的日志系统需具有三个基本组件,分别为agent(封装数据源,将数据源中的数据发送给collector),collector(接收多个agent的数据,并进行汇总后导入后端的store中),store(中央存储系统,应该具备可扩展性和可靠性,应该支持当前很是流行的HDFS)。
下面表格对比了这四个系统:
7. 参考资料
scribe主页:https://github.com/facebook/scribe
chukwa主页:http://incubator.apache.org/chukwa/
kafka主页:http://sna-projects.com/kafka/
Flume主页:https://github.com/cloudera/flume/