在r中看函数源代码:
在R中,代码能够分为以下几个级别:
首先,是你输入了函数对象名称,你能够直接看到代码的,如要得到函数对象fivenum的代码,就只须要在Console中键入函数对象名称fivenum就能够获得以下结果:
function (x, na.rm = TRUE)
{
xna <- is.na(x)
if (na.rm)
x <- x[!xna]
else if (any(xna))
return(rep.int(NA, 5))
x <- sort(x)
n <- length(x)
if (n == 0)
rep.int(NA, 5)
else {
n4 <- floor((n + 3)/2)/2
d <- c(1, n4, (n + 1)/2, n + 1 - n4, n)
0.5 * (x[floor(d)] + x[ceiling(d)])
}
}
<environment: namespace:stats>
从上面的例子能够看出,这类函数对象的代码是最容易看到的,也是咱们学习的最好的材料了,而R中最大多数的函数对象是以这种方式出现的。
其次,咱们在输入mean这类函数名次的时候,会出现以下结果:
function (x, ...)
UseMethod("mean")
<environment: namespace:base>
这表示函数做者把函数“封”起来了。这个时候咱们能够先试一试methods(mean),利用methods函数看看mean这个函数都有哪些类型的,咱们获得的结果以下:
[1] mean.data.frame mean.Date mean.default mean.difftime mean.POSIXct mean.POSIXlt
其实对此能够有一个简单的理解,虽然不够精确。由于在R中,mean函数能够求得属于不一样类型对象的平均值,而不一样类型对象平均值的求法仍是有一些小小差 异的,好比说求一个向量的平均值和求一个数据框的平均值就有所差别,就要编写多个mean函数,而后“封”起来,以一个统一的mean出现,方便咱们使 用。这正好也反映了R有一种相似泛型编程语言的性质。
既然咱们已经知道mean中还有这么多种类,咱们能够输入mean.default试一试就能够获得:
function (x, trim = 0, na.rm = FALSE, ...)
{
if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
warning("argument is not numeric or logical: returning NA")
return(as.numeric(NA))
}
if (na.rm)
x <- x[!is.na(x)]
trim <- trim[1]
n <- length(x)
if (trim > 0 && n > 0) {
if (is.complex(x))
stop("trimmed means are not defined for complex data")
if (trim >= 0.5)
return(stats::median(x, na.rm = FALSE))
lo <- floor(n * trim) + 1
hi <- n + 1 - lo
x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]
n <- hi - lo + 1
}
.Internal(mean(x))
}
<environment: namespace:base>
一样就能够获得mean.data.frame、mean.Date、mean.difftime、mean.POSIXct、mean.POSIXlt 的具体内容了。值得注意的是,在R中,出现有多个一样近似功能的函数封装为一个函数的时候(这时候在函数中多半会出现相似UseMethod函数使用的情 况),咱们不妨先输入mean.default试一试。这种形式的函数在R中通常做为默认的函数表示。
第三,这是一种特殊的状况,有人认为应该和第二种是一类,可是我仍是要提出来单独归类。在这种状况也和第二种的缘由有些相似,但并非彻底一致。
也许咱们你们都很熟悉plot函数了吧,输入函数名plot的时候,咱们会获得以下结果:
function (x, y, ...)
{
if (is.null(attr(x, "class")) && is.function(x)) {
nms <- names(list(...))
if (missing(y))
y <- {
if (!"from" %in% nms)
0
else if (!"to" %in% nms)
1
else if (!"xlim" %in% nms)
NULL
}
if ("ylab" %in% nms)
plot.function(x, y, ...)
else plot.function(x, y, ylab = paste(deparse(substitute(x)),
"(x)"), ...)
}
else UseMethod("plot")
}
<environment: namespace:graphics>
请注意plot函数中也出现了UseMethod这个函数,可是和mean不一样的是,前面有至关多的语句用于处理其余一些事情。这个时候,咱们也使用methods(plot)来看看,获得以下结果:
plot.acf* plot.data.frame* plot.Date* plot.decomposed.ts* plot.default
plot.dendrogram* plot.density plot.ecdf plot.factor* plot.formula*
plot.hclust* plot.histogram* plot.HoltWinters* plot.isoreg* plot.lm
plot.medpolish* plot.mlm plot.POSIXct* plot.POSIXlt* plot.ppr*
plot.prcomp* plot.princomp* plot.profile.nls* plot.spec plot.spec.coherency
plot.spec.phase plot.stepfun plot.stl* plot.table* plot.ts
plot.tskernel* plot.TukeyHSD
不看不知道,一看吓一跳,还觉得咱们输入plot的输出就是函数自己,结果也许不是如此。可能有人已经理解了,其实最后的UseMethod函数实在默认 的调用plot.default函数,赶快再看看plot.default函数吧,发现它再调用plot.xy函数,再看看plot.xy函数,再 plot.xy函数中调用了一个.Internal(plot.xy(xy, type, pch, lty, col, bg, cex, lwd, ...))函数,也许这就是真正起做用的函数了吧。思路基本上就是如此了,是否这个时候您能够得到一些阅读查找R函数内容的乐趣。
除了直接输入FUN.default形式外,还可使用getS3method(FUN,"default")来得到代码。这样就解决了绝大多数函数代码查看的工做了。
在第二种状况种,咱们说了通常能够经过FUN.default得到想要的结果。可是只有称为generic的函数才有这种“特权”。而lm等则没有,不过咱们也能够尝试使用methods(lm)来看看结果如何,发现:
[1] lm.fit lm.fit.null lm.influence lm.wfit lm.wfit.null
Warning message:
function 'lm' appears not to be generic in: methods(lm)
出现了警告信息,表示说lm不是泛型函数,可是仍是给出告终果lm.fit等,大体上能够当作是和lm相关的系列函数吧。这样子就出现了有趣的局面,好比说既有plot.ts,也有ts.plot。
依照第三种状况,咱们发现居然有的函数用星号标识了的,好比plot.stl*等,当咱们输入plot.stl,甚至是plot.stl*的时候都会给出 要么找不到这个对象,要么干脆是代码错误的信息。原来凡是用了*标识的函数,都是隐藏起来的函数,估计是怕被人看见(其实这是玩笑话)!咱们要看这些函数 的代码,咱们该怎么办呢?其实也很容易,使用功能强大的getAnywhere(FUN),看看这个函数的名称,就能够猜测到它的功能估计是很强大的, Anywhere的内容均可以找到!getAnywhere(plot.stl)的结果以下:
A single object matching 'plot.stl' was found
It was found in the following places
registered S3 method for plot from namespace stats
namespace:stats
with value
function (x, labels = colnames(X), set.pars = list(mar = c(0,
6, 0, 6), oma = c(6, 0, 4, 0), tck = -0.01, mfrow = c(nplot,
1)), main = NULL, range.bars = TRUE, ..., col.range = "light gray")
{
sers <- x$time.series
ncomp <- ncol(sers)
data <- drop(sers %*% rep(1, ncomp))
X <- cbind(data, sers)
colnames(X) <- c("data", colnames(sers))
nplot <- ncomp + 1
if (range.bars)
mx <- min(apply(rx <- apply(X, 2, range), 2, diff))
if (length(set.pars)) {
oldpar <- do.call("par", as.list(names(set.pars)))
on.exit(par(oldpar))
do.call("par", set.pars)
}
for (i in 1:nplot) {
plot(X[, i], type = if (i < nplot)
"l"
else "h", xlab = "", ylab = "", axes = FALSE, ...)
if (range.bars) {
dx <- 1/64 * diff(ux <- par("usr")[1:2])
y <- mean(rx[, i])
rect(ux[2] - dx, y + mx/2, ux[2] - 0.4 * dx, y -
mx/2, col = col.range, xpd = TRUE)
}
if (i == 1 && !is.null(main))
title(main, line = 2, outer = par("oma")[3] > 0)
if (i == nplot)
abline(h = 0)
box()
right <- i%%2 == 0
axis(2, labels = !right)
axis(4, labels = right)
axis(1, labels = i == nplot)
mtext(labels[i], side = 2, 3)
}
mtext("time", side = 1, line = 3)
invisible()
}
<environment: namespace:stats>
注意到前面有一段解释型的语言,描述了咱们要找的这个函数放在了什么地方等等。其实对任意咱们能够在R中使用的函数,均可以先试一试getAnywhere,看看都有些什么内容。算是一个比较“霸道”的函数。
在上面plot.xy函数中,咱们还能够看到.Internal这个函数,相似的也许还能够看到.Primitive、.External、.Call等 函数这就和R系统内部工做方式和与外部接口的定义有关了,若是对这些函数有兴趣的话,就要学习组成R系统的源代码了。
最后,若是真的想阅读组成R系统自己的源代码,在各个CRAN中均有下载。你能够获得组成R系统所须要的材料。其中不少C语言(还有就是F)的源代码,均 是精心挑选过的算法,哪怕就是想学从头至尾编写具体的算法,也是学习的好材料。同时,你能够看到R系统内部是如何构成的,理解了这些对于高效使用R有相当 重要的做用。这个范畴的材料就要着重看一看R-Lang和R-inits了。
至此,R中阅读代码的内容就依照个人理解介绍了一下。随后将有一些R代码示例的分析注解、语言自己、R应用的和行业使用的材料翻译和具体例子说明。欢迎你们多多和我交流,一块儿进步。 编程