[翻译]Mock 在 Python 中的使用介绍

Mock 在 Python 中的使用介绍

原文连接与说明

  1. https://www.toptal.com/python/an-introduction-to-mocking-in-python
  2. 本翻译文档原文选题自 Linux中国 ,翻译文档版权归属 Linux中国 全部

本文讲述的是 Python 中 Mock 的使用python

如何在避免测试你的耐心的状况下执行单元测试api

不少时候,咱们编写的软件会直接与那些被标记为肮脏无比的服务交互。用外行人的话说:交互已设计好的服务对咱们的应用程序很重要,可是这会给咱们带来不但愿的反作用,也就是那些在一个自动化测试运行的上下文中不但愿的功能。缓存

例如:咱们正在写一个社交 app,而且想要测试一下 "发布到 Facebook" 的新功能,可是不想每次运行测试集的时候真的发布到 Facebook。服务器

Python 的 unittest 库包含了一个名为 unittest.mock 或者能够称之为依赖的子包,简称为
mock —— 其提供了极其强大和有用的方法,经过它们能够模拟和打桩来去除咱们不但愿的反作用。网络

注意:mock 最近收录到了 Python 3.3 的标准库中;先前发布的版本必须经过 PyPI 下载 Mock 库。app

恐惧系统调用

再举另外一个例子,思考一个咱们会在余文讨论的系统调用。不难发现,这些系统调用都是主要的模拟对象:不管你是正在写一个能够弹出 CD 驱动的脚本,仍是一个用来删除 /tmp 下过时的缓存文件的 Web 服务,或者一个绑定到 TCP 端口的 socket 服务器,这些调用都是在你的单元测试上下文中不但愿的反作用。socket

做为一个开发者,你须要更关心你的库是否成功地调用了一个能够弹出 CD 的系统函数,而不是切身经历 CD 托盘每次在测试执行的时候都打开了。函数

做为一个开发者,你须要更关心你的库是否成功地调用了一个能够弹出 CD 的系统函数(使用了正确的参数等等),而不是切身经历 CD 托盘每次在测试执行的时候都打开了。(或者更糟糕的是,不少次,在一个单元测试运行期间多个测试都引用了弹出代码!)post

一样,保持单元测试的效率和性能意味着须要让如此多的 "缓慢代码" 远离自动测试,好比文件系统和网络访问。

对于首个例子,咱们要从原始形式到使用 mock 重构一个标准 Python 测试用例。咱们会演示如何使用 mock 写一个测试用例,使咱们的测试更加智能、快速,并展现更多关于咱们软件的工做原理。

一个简单的删除函数

有时,咱们都须要从文件系统中删除文件,所以,让咱们在 Python 中写一个可使咱们的脚本更加轻易完成此功能的函数。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import os

def rm(filename):
    os.remove(filename)

很明显,咱们的 rm 方法此时没法提供比 os.remove 方法更多的相关功能,但咱们能够在这里添加更多的功能,使咱们的基础代码逐步改善。

让咱们写一个传统的测试用例,即,没有使用 mock

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from mymodule import rm

import os.path
import tempfile
import unittest

class RmTestCase(unittest.TestCase):

    tmpfilepath = os.path.join(tempfile.gettempdir(), "tmp-testfile")

    def setUp(self):
        with open(self.tmpfilepath, "wb") as f:
            f.write("Delete me!")

    def test_rm(self):
        # remove the file
        rm(self.tmpfilepath)
        # test that it was actually removed
        self.assertFalse(os.path.isfile(self.tmpfilepath), "Failed to remove the file.")

咱们的测试用例至关简单,可是在它每次运行的时候,它都会建立一个临时文件而且随后删除。此外,咱们没有办法测试咱们的 rm 方法是否正确地将咱们的参数向下传递给 os.remove 调用。咱们能够基于以上的测试认为它作到了,但还有不少须要改进的地方。

使用 Mock 重构

让咱们使用 mock 重构咱们的测试用例:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from mymodule import rm

import mock
import unittest

class RmTestCase(unittest.TestCase):

    @mock.patch('mymodule.os')
    def test_rm(self, mock_os):
        rm("any path")
        # test that rm called os.remove with the right parameters
        mock_os.remove.assert_called_with("any path")

使用这些重构,咱们从根本上改变了测试用例的操做方式。如今,咱们有一个能够用于验证其余功能的内部对象。

潜在陷阱

第一件须要注意的事情就是,咱们使用了 mock.patch 方法装饰器,用于模拟位于 mymodule.os 的对象,而且将 mock 注入到咱们的测试用例方法。那么只是模拟 os 自己,而不是 mymodule.osos 的引用(注意 @mock.patch('mymodule.os') 即是模拟 mymodule.os 下的 os,译者注),会不会更有意义呢?

固然,当涉及到导入和管理模块,Python 的用法很是灵活。在运行时,mymodule 模块拥有被导入到本模块局部做用域的 os。所以,若是咱们模拟 os,咱们是看不到 mock 在 mymodule 模块中的做用的。

这句话须要深入地记住:

模拟测试一个项目,只须要了解它用在哪里,而不是它从哪里来。

若是你须要为 myproject.app.MyElaborateClass 模拟 tempfile 模块,你可能须要将 mock 用于 myproject.app.tempfile,而其余模块保持本身的导入。

先将那个陷阱置身事外,让咱们继续模拟。

向 ‘rm’ 中加入验证

以前定义的 rm 方法至关的简单。在盲目地删除以前,咱们倾向于验证一个路径是否存在,并验证其是不是一个文件。让咱们重构 rm 使其变得更加智能:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import os
import os.path

def rm(filename):
    if os.path.isfile(filename):
        os.remove(filename)

很好。如今,让咱们调整测试用例来保持测试的覆盖率。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from mymodule import rm

import mock
import unittest

class RmTestCase(unittest.TestCase):

    @mock.patch('mymodule.os.path')
    @mock.patch('mymodule.os')
    def test_rm(self, mock_os, mock_path):
        # set up the mock
        mock_path.isfile.return_value = False

        rm("any path")

        # test that the remove call was NOT called.
        self.assertFalse(mock_os.remove.called, "Failed to not remove the file if not present.")

        # make the file 'exist'
        mock_path.isfile.return_value = True

        rm("any path")

        mock_os.remove.assert_called_with("any path")

咱们的测试用例彻底改变了。如今咱们能够在没有任何反作用下核实并验证方法的内部功能。

将文件删除做为服务

到目前为止,咱们只是将 mock 应用在函数上,并没应用在须要传递参数的对象和实例的方法。咱们如今开始涵盖对象的方法。

首先,咱们将 rm 方法重构成一个服务类。实际上将这样一个简单的函数转换成一个对象,在本质上这不是一个合理的需求,但它可以帮助咱们了解 mock 的关键概念。让咱们开始重构:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import os
import os.path

class RemovalService(object):
    """A service for removing objects from the filesystem."""

    def rm(filename):
        if os.path.isfile(filename):
            os.remove(filename)

你会注意到咱们的测试用例没有太大变化:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from mymodule import RemovalService

import mock
import unittest

class RemovalServiceTestCase(unittest.TestCase):

    @mock.patch('mymodule.os.path')
    @mock.patch('mymodule.os')
    def test_rm(self, mock_os, mock_path):
        # instantiate our service
        reference = RemovalService()

        # set up the mock
        mock_path.isfile.return_value = False

        reference.rm("any path")

        # test that the remove call was NOT called.
        self.assertFalse(mock_os.remove.called, "Failed to not remove the file if not present.")

        # make the file 'exist'
        mock_path.isfile.return_value = True

        reference.rm("any path")

        mock_os.remove.assert_called_with("any path")

很好,咱们知道 RemovalService 会如期工做。接下来让咱们建立另外一个服务,将 RemovalService 声明为它的一个依赖:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import os
import os.path

class RemovalService(object):
    """A service for removing objects from the filesystem."""

    def rm(self, filename):
        if os.path.isfile(filename):
            os.remove(filename)


class UploadService(object):

    def __init__(self, removal_service):
        self.removal_service = removal_service

    def upload_complete(self, filename):
        self.removal_service.rm(filename)

由于咱们的测试覆盖了 RemovalService,所以咱们不会对咱们测试用例中 UploadService 的内部函数 rm 进行验证。相反,咱们将调用 UploadServiceRemovalService.rm 方法来进行简单测试(固然没有其余反作用),咱们经过以前的测试用例便能知道它能够正确地工做。

这里有两种方法来实现测试:

  1. 模拟 RemovalService.rm 方法自己。
  2. 在 UploadService 的构造函数中提供一个模拟实例。

由于这两种方法都是单元测试中很是重要的方法,因此咱们将同时对这两种方法进行回顾。

方法 1:模拟实例的方法

mock 库有一个特殊的方法装饰器,能够模拟对象实例的方法和属性,即 @mock.patch.object decorator 装饰器:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from mymodule import RemovalService, UploadService

import mock
import unittest

class RemovalServiceTestCase(unittest.TestCase):

    @mock.patch('mymodule.os.path')
    @mock.patch('mymodule.os')
    def test_rm(self, mock_os, mock_path):
        # instantiate our service
        reference = RemovalService()

        # set up the mock
        mock_path.isfile.return_value = False

        reference.rm("any path")

        # test that the remove call was NOT called.
        self.assertFalse(mock_os.remove.called, "Failed to not remove the file if not present.")

        # make the file 'exist'
        mock_path.isfile.return_value = True

        reference.rm("any path")

        mock_os.remove.assert_called_with("any path")


class UploadServiceTestCase(unittest.TestCase):

    @mock.patch.object(RemovalService, 'rm')
    def test_upload_complete(self, mock_rm):
        # build our dependencies
        removal_service = RemovalService()
        reference = UploadService(removal_service)

        # call upload_complete, which should, in turn, call `rm`:
        reference.upload_complete("my uploaded file")

        # check that it called the rm method of any RemovalService
        mock_rm.assert_called_with("my uploaded file")

        # check that it called the rm method of _our_ removal_service
        removal_service.rm.assert_called_with("my uploaded file")

很是棒!咱们验证了 UploadService 成功调用了咱们实例的 rm 方法。你是否注意到一些有趣的地方?这种修补机制(patching mechanism)实际上替换了咱们测试用例中的全部 RemovalService 实例的 rm 方法。这意味着咱们能够检查实例自己。若是你想要了解更多,能够试着在你模拟的代码下断点,以对这种修补机制的原理得到更好的认识。

陷阱:装饰顺序

当咱们在测试方法中使用多个装饰器,其顺序是很重要的,而且很容易混乱。基本上,当装饰器被映射到方法参数时,装饰器的工做顺序是反向的。思考这个例子:

@mock.patch('mymodule.sys')
    @mock.patch('mymodule.os')
    @mock.patch('mymodule.os.path')
    def test_something(self, mock_os_path, mock_os, mock_sys):
        pass

注意到咱们的参数和装饰器的顺序是反向匹配了吗?这多多少少是由 Python 的工做方式 致使的。这里是使用多个装饰器的状况下它们执行顺序的伪代码:

patch_sys(patch_os(patch_os_path(test_something)))

由于 sys 补丁位于最外层,因此它最晚执行,使得它成为实际测试方法参数的最后一个参数。请特别注意这一点,而且在运行你的测试用例时,使用调试器来保证正确的参数以正确的顺序注入。

方法 2:建立 Mock 实例

咱们可使用构造函数为 UploadService 提供一个 Mock 实例,而不是模拟特定的实例方法。我更推荐方法 1,由于它更加精确,但在多数状况,方法 2 或许更加有效和必要。让咱们再次重构测试用例:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

from mymodule import RemovalService, UploadService

import mock
import unittest

class RemovalServiceTestCase(unittest.TestCase):

    @mock.patch('mymodule.os.path')
    @mock.patch('mymodule.os')
    def test_rm(self, mock_os, mock_path):
        # instantiate our service
        reference = RemovalService()

        # set up the mock
        mock_path.isfile.return_value = False

        reference.rm("any path")

        # test that the remove call was NOT called.
        self.assertFalse(mock_os.remove.called, "Failed to not remove the file if not present.")

        # make the file 'exist'
        mock_path.isfile.return_value = True

        reference.rm("any path")

        mock_os.remove.assert_called_with("any path")


class UploadServiceTestCase(unittest.TestCase):

    def test_upload_complete(self, mock_rm):
        # build our dependencies
        mock_removal_service = mock.create_autospec(RemovalService)
        reference = UploadService(mock_removal_service)

        # call upload_complete, which should, in turn, call `rm`:
        reference.upload_complete("my uploaded file")

        # test that it called the rm method
        mock_removal_service.rm.assert_called_with("my uploaded file")

在这个例子中,咱们甚至不须要补充任何功能,只需为 RemovalService 类建立一个 auto-spec,而后将实例注入到咱们的 UploadService 以验证功能。

mock.create_autospec 方法为类提供了一个同等功能实例。实际上来讲,这意味着在使用返回的实例进行交互的时候,若是使用了非法的方式将会引起异常。更具体地说,若是一个方法被调用时的参数数目不正确,将引起一个异常。这对于重构来讲是很是重要。当一个库发生变化的时候,中断测试正是所指望的。若是不使用 auto-spec,尽管底层的实现已经被破坏,咱们的测试仍然会经过。

陷阱:mock.Mock 和 mock.MagicMock 类

mock 库包含了两个重要的类 mock.Mockmock.MagicMock,大多数内部函数都是创建在这两个类之上的。当在选择使用 mock.Mock 实例,mock.MagicMock 实例或 auto-spec 的时候,一般倾向于选择使用 auto-spec,由于对于将来的变化,它更能保持测试的健全。这是由于 mock.Mockmock.MagicMock 会无视底层的 API,接受全部的方法调用和属性赋值。好比下面这个用例:

class Target(object):
    def apply(value):
        return value

def method(target, value):
    return target.apply(value)

咱们能够像下面这样使用 mock.Mock 实例进行测试:

class MethodTestCase(unittest.TestCase):

    def test_method(self):
        target = mock.Mock()

        method(target, "value")

        target.apply.assert_called_with("value")

这个逻辑看似合理,但若是咱们修改 Target.apply 方法接受更多参数:

class Target(object):
    def apply(value, are_you_sure):
        if are_you_sure:
            return value
        else:
            return None

从新运行你的测试,你会发现它仍能经过。这是由于它不是针对你的 API 建立的。这就是为何你老是应该使用 create_autospec 方法,而且在使用 @patch@patch.object 装饰方法时使用 autospec 参数。

现实例子:模拟 Facebook API 调用

为了完成,咱们写一个更加适用的现实例子,一个在介绍中说起的功能:发布消息到 Facebook。我将写一个不错的包装类及其对应的测试用例。

import facebook

class SimpleFacebook(object):

    def __init__(self, oauth_token):
        self.graph = facebook.GraphAPI(oauth_token)

    def post_message(self, message):
        """Posts a message to the Facebook wall."""
        self.graph.put_object("me", "feed", message=message)

这是咱们的测试用例,它能够检查咱们发布的消息,而不是真正地发布消息:

import facebook
import simple_facebook
import mock
import unittest

class SimpleFacebookTestCase(unittest.TestCase):

    @mock.patch.object(facebook.GraphAPI, 'put_object', autospec=True)
    def test_post_message(self, mock_put_object):
        sf = simple_facebook.SimpleFacebook("fake oauth token")
        sf.post_message("Hello World!")

        # verify
        mock_put_object.assert_called_with(message="Hello World!")

正如咱们所看到的,在 Python 中,经过 mock,咱们能够很是容易地动手写一个更加智能的测试用例。

Python Mock 总结

单元测试 来讲,Python 的 mock 库能够说是一个游戏变革者,即便对于它的使用还有点困惑。咱们已经演示了单元测试中常见的用例以开始使用 mock,并但愿这篇文章可以帮助 Python 开发者 克服初期的障碍,写出优秀、经受过考验的代码。


via: https://www.toptal.com/python/an-introduction-to-mocking-in-python

相关文章
相关标签/搜索