JavaShuo
栏目
标签
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
时间 2021-07-14
原文
原文链接
Abstract 神经网络的研究重点从算法的研究过度到合适(suitable)且大量训练数据的创建。传统的计算机视觉任务通过人工标注的网络数据来获得训练集。对于光流和场景流问题,由于无法人为进入每个像素精确光流场的限制,所以通过人工标注数据集的方法不可行。此论文提倡使用合成数据集来训练神经网络,并以此实现光流以及场景流的计算。此论文利用不同的合成训练集来训练神经网络,并评估了不同合
>>阅读原文<<
相关文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
论文解读2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人群计数:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
更多相关文章...
•
XSL-FO flow 对象
-
XSL-FO 教程
•
XML DOM data 属性
-
XML DOM 教程
•
RxJava操作符(七)Conditional and Boolean
•
Java Agent入门实战(三)-JVM Attach原理与使用
相关标签/搜索
flow
synthetic
good
optical
makes
estimation
disparity
training
learning
data
MyBatis教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正确理解商业智能 BI 的价值所在
2.
解决梯度消失梯度爆炸强力推荐的一个算法-----LSTM(长短时记忆神经网络)
3.
解决梯度消失梯度爆炸强力推荐的一个算法-----GRU(门控循环神经⽹络)
4.
HDU4565
5.
算概率投硬币
6.
密码算法特性
7.
DICOMRT-DiTools:clouddicom源码解析(1)
8.
HDU-6128
9.
计算机网络知识点详解(持续更新...)
10.
hods2896(AC自动机)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?
2.
What are some good books/papers for learning deep learning?
3.
ProFlow: Learning to Predict Optical Flow
4.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
5.
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation
6.
FlowNet: Learning Optical Flow with Convolutional Networks
7.
FlowNet 2.0 Evolution of Optical Flow Estimation with Deep Networks
8.
论文解读2-Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation
9.
人群计数:SFCN--Learning from Synthetic Data for Crowd Counting in the Wild
10.
Game Development Theory 1:What makes a game ‘good’?
>>更多相关文章<<