Go最吸引人的两个地方,除了goroutine,也就是channel了,同时,我一直很纳闷,select究竟是怎么实现的?跟我以前的文章同样,部分无关的代码直接省略golang
这个就是channel的结构体了数组
type hchan struct { qcount uint // 队列中数据总量 dataqsiz uint // 环形队列的大小,> 0表示有缓冲,= 0表示无缓冲 buf unsafe.Pointer // 指向元素数组的指针 elemsize uint16 // 单个元素的大小 closed uint32 // 代表是否close了 elemtype *_type // 元素类型,后面写interface的时候再具体介绍 sendx uint // send数组的索引, c <- i recvx uint // receive 数组的索引 <- c recvq waitq // 等待recv 数据的goroutine的链表 sendq waitq // 等待send数据的goroutine链表 lock mutex }
type waitq struct { first *sudog last *sudog }
sudog 表明了一个在等待中的g缓存
type sudog struct { g *g // isSelect indicates g is participating in a select, so // g.selectDone must be CAS'd to win the wake-up race. isSelect bool next *sudog prev *sudog elem unsafe.Pointer // 数据元素, c <- 1, 此时就是 1 // The following fields are never accessed concurrently. // For channels, waitlink is only accessed by g. // For semaphores, all fields (including the ones above) // are only accessed when holding a semaRoot lock. acquiretime int64 releasetime int64 ticket uint32 parent *sudog // semaRoot binary tree waitlink *sudog // g.waiting list or semaRoot waittail *sudog // semaRoot c *hchan // channel }
这个是 select 中一个case生成的结构体app
type scase struct { c *hchan // chan elem unsafe.Pointer // data element kind uint16 // 当前case的类型,nil recv send 仍是 default pc uintptr // race pc (for race detector / msan) releasetime int64 }
经过上面的结构,咱们能够看出,channel的内部实质就是一个缓冲池+两个队列(send recv),那么数据是如何交互的呢,网上有个示意图,展现的仍是比较形象的异步
综合 上面的结构和图示,大概能够推测出 channel 的send recv流程函数
若是是recv(<-channel )请求,则先去判断一个sendq队列里有没有人等待这放数据工具
接下来就是跟踪源码,证实及纠正猜测了oop
咱们使用 go tool 工具分析一下,channel 生成, c <- i, <- c 在底层都是经过什么方法实现的源码分析
func main() { c1 := make(chan int) c2 := make(chan int, 2) go func() { c1 <- 1 c2 <- 2 }() <-c1 <-c2 close(c1) close(c2) }
go build -gcflags=all="-N -l" main.gogo tool objdump -s "main.main" main学习
咱们把 CALL 过滤出来后
▶ go tool objdump -s "main\.main" main | grep CALL main.go:4 0x4548d5 e806fbfaff CALL runtime.makechan(SB) main.go:5 0x4548f8 e8e3fafaff CALL runtime.makechan(SB) main.go:6 0x454929 e822a1fdff CALL runtime.newproc(SB) main.go:10 0x454940 e81b08fbff CALL runtime.chanrecv1(SB) main.go:11 0x454957 e80408fbff CALL runtime.chanrecv1(SB) main.go:12 0x454965 e82605fbff CALL runtime.closechan(SB) main.go:13 0x454973 e81805fbff CALL runtime.closechan(SB) main.go:3 0x454982 e8d981ffff CALL runtime.morestack_noctxt(SB) main.go:7 0x454a32 e899fcfaff CALL runtime.chansend1(SB) main.go:8 0x454a4c e87ffcfaff CALL runtime.chansend1(SB) main.go:6 0x454a5b e80081ffff CALL runtime.morestack_noctxt(SB)
建立channel这一块主要就是给结构体和bug缓冲池分配内存,而后初始化一下hchan的结构体
func makechan(t *chantype, size int) *hchan { elem := t.elem // compiler checks this but be safe. // 校验elem的大小限制 if elem.size >= 1<<16 { throw("makechan: invalid channel element type") } // 对齐限制 if hchanSize%maxAlign != 0 || elem.align > maxAlign { throw("makechan: bad alignment") } // size,即make(chan int, 2)中的2,默认不传为0, 判断size的上限和下限 if size < 0 || uintptr(size) > maxSliceCap(elem.size) || uintptr(size)*elem.size > maxAlloc-hchanSize { panic(plainError("makechan: size out of range")) } var c *hchan switch { case size == 0 || elem.size == 0: // 队列或者元素size为0,不分配缓冲池 // Queue or element size is zero. c = (*hchan)(mallocgc(hchanSize, nil, true)) // Race detector uses this location for synchronization. // buf指向自身,没有分配内存 c.buf = c.raceaddr() case elem.kind&kindNoPointers != 0: // Elements do not contain pointers. // Allocate hchan and buf in one call. // 分配一整块内存,用于存储hchan和 buf c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true)) c.buf = add(unsafe.Pointer(c), hchanSize) default: // Elements contain pointers. // 是指针类型,那正常分配hchan结构体便可,buf单独分配 c = new(hchan) c.buf = mallocgc(uintptr(size)*elem.size, elem, true) } // 初始化 hchan的属性 c.elemsize = uint16(elem.size) c.elemtype = elem c.dataqsiz = uint(size) return c }
chanrecv1
调用了chanrecv
实现,chanrecv
监听channel并接收 channel里面的数据,并写入到 ep 里面
func chanrecv1(c *hchan, elem unsafe.Pointer) { chanrecv(c, elem, true) } func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) { lock(&c.lock) if c.closed != 0 && c.qcount == 0 { unlock(&c.lock) if ep != nil { // 清空地址里面的数据值,但不会改变类型 typedmemclr(c.elemtype, ep) } return true, false } if sg := c.sendq.dequeue(); sg != nil { // 获取一个等待send的sudog,而后判断channel是否有缓冲区,若是有无缓冲区,获取sudog里面的数据便可, 若是channel有缓冲区,则获取缓冲区的头元素,把获取到的sudog的元素添加到缓冲区的队尾 recv(c, sg, ep, func() { unlock(&c.lock) }, 3) return true, true } if c.qcount > 0 { // Receive directly from queue // 缓冲区有数据,且send队列没有等待发送数据的sudog,(异步且缓冲区刚满或未满的状况),根据recvx索引,获取数据 qp := chanbuf(c, c.recvx) // 若是ep不为nil,拷贝 gp 到 ep if ep != nil { typedmemmove(c.elemtype, ep, qp) } // gp地址里的数据清除 typedmemclr(c.elemtype, qp) // 更新下一次recv的索引 c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } // 更新 qcount计数 c.qcount-- unlock(&c.lock) return true, true } if !block { unlock(&c.lock) return false, false } // no sender available: block on this channel. // 找不到send 的sudog,缓冲区也没有数据,须要阻塞 gp := getg() // 获取一个sudog的结构,并更新这个sudog的属性 mysg := acquireSudog() mysg.releasetime = 0 // No stack splits between assigning elem and enqueuing mysg // on gp.waiting where copystack can find it. mysg.elem = ep mysg.waitlink = nil gp.waiting = mysg mysg.g = gp mysg.isSelect = false mysg.c = c gp.param = nil // 把这个sudog放入到recv的队列 c.recvq.enqueue(mysg) // 休眠这个g,当g被唤醒后,从这里继续执行 goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3) // someone woke us up if mysg != gp.waiting { throw("G waiting list is corrupted") } gp.waiting = nil if mysg.releasetime > 0 { blockevent(mysg.releasetime-t0, 2) } closed := gp.param == nil gp.param = nil mysg.c = nil // 清理完sudog的属性后,把sudog释放 releaseSudog(mysg) return true, !closed }
经过上面的逻辑,能够看出来数据传输的四种可能
这里细想一下,其实会发现一个问题,在上面L66 goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3)
休眠g后,g被唤醒后从这里开始继续往下执行,好像没有什么逻辑显示,这个recv g获取到了数据,这个g阻塞在这里是为了等数据来的,可是下面的逻辑,居然没有一个是操做数据的?
接下来分析的 recv
这个方法就能理解了
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) { // 若是是无缓冲区的channel if c.dataqsiz == 0 { if ep != nil { // copy data from sender // 直接在两个g之间进行数据拷贝 recvDirect(c.elemtype, sg, ep) } } else { // 这里是有缓冲区才会走到的逻辑 // Queue is full. Take the item at the // head of the queue. Make the sender enqueue // its item at the tail of the queue. Since the // queue is full, those are both the same slot. // 由于在sendq队列获取到了等待发送数据的sudog,因此说明缓冲区已经满了,根据rcvx获取buf里面队列首元素的地址 qp := chanbuf(c, c.recvx) // copy data from queue to receiver if ep != nil { // 把buf里面的数据拷贝到ep里面 typedmemmove(c.elemtype, ep, qp) } // copy data from sender to queue // 把从sendq队列获取到的sudog的数据拷贝到刚刚的buf地址里面,并更新buf里面recvx的索引,也就是表名,buf队列的首元素地址后移 typedmemmove(c.elemtype, qp, sg.elem) c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz } // 清空sudog的数据 sg.elem = nil gp := sg.g unlockf() gp.param = unsafe.Pointer(sg) if sg.releasetime != 0 { sg.releasetime = cputicks() } // 唤醒sendq里面获取的sugog对应的g goready(gp, skip+1) }
结合上面的逻辑就发现,g在被唤醒以前,跟g相关的sudog的数据就已经被channel使用掉了,因此当g被唤醒时,无需处理跟数据传输相关的逻辑了
获取一个sudog的结构,这里跟cache和scheduler调度待运行g的队列同样,使用了 p sched 的两级缓存,也就是本地缓存一个sudog的数组,同时在全局的 sched结构上面也维护了一个sudogcache的链表,当p本地的sudog不足或者过多的时候,就去跟全局的sched 进行平衡
func acquireSudog() *sudog { // 加锁 mp := acquirem() pp := mp.p.ptr() // 若是当前缓存的没有sudog了,则去全局的sched中批量拉取一些sudog缓存到当前p if len(pp.sudogcache) == 0 { lock(&sched.sudoglock) // First, try to grab a batch from central cache. for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil { s := sched.sudogcache sched.sudogcache = s.next s.next = nil pp.sudogcache = append(pp.sudogcache, s) } unlock(&sched.sudoglock) // If the central cache is empty, allocate a new one. if len(pp.sudogcache) == 0 { pp.sudogcache = append(pp.sudogcache, new(sudog)) } } // 从本地缓存的sudog里面,获取第一个返回,并更新sudogcache slice n := len(pp.sudogcache) s := pp.sudogcache[n-1] pp.sudogcache[n-1] = nil pp.sudogcache = pp.sudogcache[:n-1] if s.elem != nil { throw("acquireSudog: found s.elem != nil in cache") } // 去锁 releasem(mp) return s }
releaseSudog
就是释放当前使用的sudog,并平衡p本地缓存的sudog和全局队列的sudog
func releaseSudog(s *sudog) { mp := acquirem() // avoid rescheduling to another P pp := mp.p.ptr() // 若是 p本地缓存的sudog的数量超出这个slice的最大长度,则平衡通常的sudog到全局的sched上面 if len(pp.sudogcache) == cap(pp.sudogcache) { // Transfer half of local cache to the central cache. var first, last *sudog for len(pp.sudogcache) > cap(pp.sudogcache)/2 { n := len(pp.sudogcache) p := pp.sudogcache[n-1] pp.sudogcache[n-1] = nil pp.sudogcache = pp.sudogcache[:n-1] if first == nil { first = p } else { last.next = p } last = p } lock(&sched.sudoglock) last.next = sched.sudogcache sched.sudogcache = first unlock(&sched.sudoglock) } // 把释放的sudog放到本地缓存的slice里面 pp.sudogcache = append(pp.sudogcache, s) releasem(mp) }
发送逻辑跟接收的逻辑差很少
func chansend1(c *hchan, elem unsafe.Pointer) { chansend(c, elem, true, getcallerpc()) } func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool { lock(&c.lock) // 从recvq队列获取一个 sudog if sg := c.recvq.dequeue(); sg != nil { // Found a waiting receiver. We pass the value we want to send // directly to the receiver, bypassing the channel buffer (if any). send(c, sg, ep, func() { unlock(&c.lock) }, 3) return true } // 若是qcount < dataqsiz,说明这个channel是带buf的channel,并且buf没有满,直接把数据ep添加到buf队尾便可 if c.qcount < c.dataqsiz { // Space is available in the channel buffer. Enqueue the element to send. qp := chanbuf(c, c.sendx) typedmemmove(c.elemtype, qp, ep) c.sendx++ if c.sendx == c.dataqsiz { c.sendx = 0 } // 更新qcount c.qcount++ unlock(&c.lock) return true } if !block { unlock(&c.lock) return false } // Block on the channel. Some receiver will complete our operation for us. // 走到这里说明,buf满了或者没有buf,并且recvq队列为空,就须要阻塞当前的g,等待有其余的g接收数据 gp := getg() // 获取一个sudog,并初始化相关属性 mysg := acquireSudog() mysg.releasetime = 0 if t0 != 0 { mysg.releasetime = -1 } // No stack splits between assigning elem and enqueuing mysg // on gp.waiting where copystack can find it. mysg.elem = ep mysg.waitlink = nil mysg.g = gp mysg.isSelect = false mysg.c = c gp.waiting = mysg gp.param = nil // 把sudog入队sendq c.sendq.enqueue(mysg) // 休眠当前g,等待其余的g recv数据,recv数据后,唤醒这个g goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3) // someone woke us up. if mysg != gp.waiting { throw("G waiting list is corrupted") } gp.waiting = nil if gp.param == nil { if c.closed == 0 { throw("chansend: spurious wakeup") } panic(plainError("send on closed channel")) } gp.param = nil if mysg.releasetime > 0 { blockevent(mysg.releasetime-t0, 2) } mysg.c = nil // 释放sudog releaseSudog(mysg) return true }
send
跟 recv
的逻辑也是大体相同的,并且由于从recvq里面拿到了一个sudog,因此说明缓冲区为空,那么send
方法就不须要考虑往缓冲区添加数据了,send
比recv
更加简单,只须要交换数据、唤醒g便可
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) { if sg.elem != nil { sendDirect(c.elemtype, sg, ep) sg.elem = nil } gp := sg.g unlockf() gp.param = unsafe.Pointer(sg) if sg.releasetime != 0 { sg.releasetime = cputicks() } goready(gp, skip+1) }
收发数据已经结束了,最后就是关闭channel了
func closechan(c *hchan) { // nil chan 检查 if c == nil { panic(plainError("close of nil channel")) } lock(&c.lock) // closed chan 检查 if c.closed != 0 { unlock(&c.lock) panic(plainError("close of closed channel")) } // 设置c为closed状态 c.closed = 1 var glist *g // release all readers // 遍历 recvq,清除sudog的数据,并把recvq中sudog对应的g串成一个链表 for { sg := c.recvq.dequeue() if sg == nil { break } if sg.elem != nil { typedmemclr(c.elemtype, sg.elem) sg.elem = nil } if sg.releasetime != 0 { sg.releasetime = cputicks() } gp := sg.g gp.param = nil gp.schedlink.set(glist) glist = gp } // release all writers (they will panic) // 遍历sendq,清除sudog的数据,并把sendq中的sudog中的g和recvq中的sudog一块儿串成一个链表 for { sg := c.sendq.dequeue() if sg == nil { break } sg.elem = nil if sg.releasetime != 0 { sg.releasetime = cputicks() } gp := sg.g gp.param = nil if raceenabled { raceacquireg(gp, c.raceaddr()) } gp.schedlink.set(glist) glist = gp } unlock(&c.lock) // Ready all Gs now that we've dropped the channel lock. // 唤醒上面收集的全部的g for glist != nil { gp := glist glist = glist.schedlink.ptr() gp.schedlink = 0 goready(gp, 3) } }
chan close以后,全部阻塞的recvq 和 sendq(recvq和sendq只有有一个队列存在)中的sudog,清除sudog的一些数据和状态,设置 gp.param = nil
, 让上层逻辑知道这是由于 close chan致使的
唤醒全部的g以后,g就会 继续执行 chansend
或者 chanrecv
中剩余的逻辑,也就是释放sudog(这也就是为何 closechan 不须要释放sudog的缘由)
语言的表述老是苍白的,在网上找资料的时候正好看到了两张流程图,能够结合着来看
发送流程(send)
接收流程(recv)
channel的收发流程在上面已经追踪了,流程也已经清晰了,可是跟channel一块儿使用的还有一个select,那select的流程又是什么呢
咱们仍是用go tool工具分析一下
func main() { c1 := make(chan int) c2 := make(chan int) go func() { time.Sleep(time.Second) <-c2 c1 <- 1 }() select { case v := <-c1: fmt.Printf("%d <- c1", v) case c2 <- 1: fmt.Println("c2 <- 1") } }
分析结果过滤一下CALL
main.go:9 0x4a05c6 e81542f6ff CALL runtime.makechan(SB) main.go:10 0x4a05ec e8ef41f6ff CALL runtime.makechan(SB) main.go:11 0x4a0620 e82b3bf9ff CALL runtime.newproc(SB) main.go:16 0x4a0654 e82c94fbff CALL 0x459a85 main.go:16 0x4a06e3 e8d8b7f9ff CALL runtime.selectgo(SB) main.go:18 0x4a074c e8df8df6ff CALL runtime.convT2E64(SB) main.go:18 0x4a07ec e8cf89ffff CALL fmt.Printf(SB) main.go:18 0x4a0806 e8f587fbff CALL runtime.gcWriteBarrier(SB) main.go:20 0x4a088c e87f8bffff CALL fmt.Println(SB) main.go:8 0x4a0898 e85369fbff CALL runtime.morestack_noctxt(SB) main.go:12 0x4a0945 e8868efaff CALL time.Sleep(SB) main.go:13 0x4a095c e8ff4bf6ff CALL runtime.chanrecv1(SB) main.go:14 0x4a0976 e85541f6ff CALL runtime.chansend1(SB) main.go:11 0x4a0985 e86668fbff CALL runtime.morestack_noctxt(SB)
能够看出来,select 的实现是靠 selectgo
函数的
觉得就这样吗,而后咱们就开始分析 selectgo
函数了,不,在我手贱的时候还发现了另外一种状况
func main() { c1 := make(chan int) go func() { time.Sleep(time.Second) c1 <- 1 }() select { case <-c1: fmt.Printf("c1 <- 1") default: fmt.Println("default") } }
分析结果以下:
main.go:9 0x49eca8 e8335bf6ff CALL runtime.makechan(SB) main.go:11 0x49eccf e85c54f9ff CALL runtime.newproc(SB) main.go:17 0x49ece6 e83570f6ff CALL runtime.selectnbrecv(SB) main.go:18 0x49ed1c e88f8bffff CALL fmt.Printf(SB) main.go:22 0x49ed8f e86c8dffff CALL fmt.Println(SB) main.go:8 0x49ed96 e8556cfbff CALL runtime.morestack_noctxt(SB) main.go:12 0x49ee35 e87692faff CALL time.Sleep(SB) main.go:13 0x49ee4f e87c5cf6ff CALL runtime.chansend1(SB) main.go:11 0x49ee5e e88d6bfbff CALL runtime.morestack_noctxt(SB)
能够看到,这里 select 的实现是依靠底层的 selectnbrecv
的函数的,若是,既然有 selectnbrecv
函数,会不会有 selectnbsend
函数呢,继续试验一下
func main() { c1 := make(chan int) go func() { time.Sleep(time.Second) <- c1 }() select { case c1 <- 1: fmt.Printf("c1 <- 1") default: fmt.Println("default") } }
分析j结果
main.go:9 0x49ecb3 e8285bf6ff CALL runtime.makechan(SB) main.go:11 0x49ecda e85154f9ff CALL runtime.newproc(SB) main.go:17 0x49ed05 e81670f6ff CALL runtime.selectnbsend(SB) main.go:18 0x49ed3b e8708bffff CALL fmt.Printf(SB) main.go:22 0x49edb4 e8478dffff CALL fmt.Println(SB) main.go:8 0x49edbb e8306cfbff CALL runtime.morestack_noctxt(SB) main.go:12 0x49ee65 e84692faff CALL time.Sleep(SB) main.go:13 0x49ee7c e8df66f6ff CALL runtime.chanrecv1(SB) main.go:11 0x49ee8b e8606bfbff CALL runtime.morestack_noctxt(SB)
这里就是用 selectnbsend
函数实现了 select 语句,而后继续试验,得出结论以下:
selectnbrecv
实现selectnbsend
实现selectgo
实现好了,咱们开始从 selectgo
开始跟踪了,可是跟踪selectgo以前,咱们须要选跟踪一下 reflect_rselect
, 否则看着 selectgo
函数的参数,彻底就是一脸懵逼啊
func reflect_rselect(cases []runtimeSelect) (int, bool) { // 若是没有case的select,休眠当前goroutine if len(cases) == 0 { block() } sel := make([]scase, len(cases)) order := make([]uint16, 2*len(cases)) for i := range cases { rc := &cases[i] switch rc.dir { case selectDefault: sel[i] = scase{kind: caseDefault} case selectSend: // 若是是发送的话,c <- 1, rc.val 就是1的地址 sel[i] = scase{kind: caseSend, c: rc.ch, elem: rc.val} case selectRecv: // 若是是接收的话,v:= <- c, rc.val 就是v的地址 sel[i] = scase{kind: caseRecv, c: rc.ch, elem: rc.val} } } return selectgo(&sel[0], &order[0], len(cases)) }
func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) { cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0)) order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0)) // order是 2*ncases长度的slice,而后把 order[0-ncases] 给 pollorder用,order[ncases-2ncases] 给lockorder用 scases := cas1[:ncases:ncases] pollorder := order1[:ncases:ncases] lockorder := order1[ncases:][:ncases:ncases] // Replace send/receive cases involving nil channels with // caseNil so logic below can assume non-nil channel. for i := range scases { cas := &scases[i] if cas.c == nil && cas.kind != caseDefault { *cas = scase{} } } // The compiler rewrites selects that statically have // only 0 or 1 cases plus default into simpler constructs. // The only way we can end up with such small sel.ncase // values here is for a larger select in which most channels // have been nilled out. The general code handles those // cases correctly, and they are rare enough not to bother // optimizing (and needing to test). // generate permuted order // 肯定轮询的顺序 for i := 1; i < ncases; i++ { j := fastrandn(uint32(i + 1)) pollorder[i] = pollorder[j] pollorder[j] = uint16(i) } // sort the cases by Hchan address to get the locking order. // simple heap sort, to guarantee n log n time and constant stack footprint. // 经过hchan的地址来肯定加锁顺序,使用堆排序减小时间复杂度 for i := 0; i < ncases; i++ { j := i // Start with the pollorder to permute cases on the same channel. c := scases[pollorder[i]].c for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() { k := (j - 1) / 2 lockorder[j] = lockorder[k] j = k } lockorder[j] = pollorder[i] } for i := ncases - 1; i >= 0; i-- { o := lockorder[i] c := scases[o].c lockorder[i] = lockorder[0] j := 0 for { k := j*2 + 1 if k >= i { break } if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() { k++ } if c.sortkey() < scases[lockorder[k]].c.sortkey() { lockorder[j] = lockorder[k] j = k continue } break } lockorder[j] = o } // lock all the channels involved in the select // 根据上面肯定的加锁顺序 lockorder,来逐个对case进行加锁 sellock(scases, lockorder) var ( gp *g sg *sudog c *hchan k *scase sglist *sudog sgnext *sudog qp unsafe.Pointer nextp **sudog ) loop: // pass 1 - look for something already waiting var dfli int var dfl *scase var casi int var cas *scase var recvOK bool for i := 0; i < ncases; i++ { // 根据pollorder,获取当前轮询到的case casi = int(pollorder[i]) cas = &scases[casi] c = cas.c switch cas.kind { // nil类型的case,无视,继续下一个 case caseNil: continue case caseRecv: // recv类型的case,判断sendq的队列中有没有等待发送数据的sudog,若是获取到的话,跳转到 recv sg = c.sendq.dequeue() if sg != nil { goto recv } // 没有sudog在sendq队列排队,而后检查buf里面是否有数据,若是buf里有,则跳转到bufrecv if c.qcount > 0 { goto bufrecv } // 最后 sendq buf都拿不到数据,则判断这个channel是否为关闭状态了 // 因此 能够看出来,若是咱们关闭一个带buf的channel,在关闭以后仍是能把以前存储的数据读完的 if c.closed != 0 { goto rclose } case caseSend: // send 类型的case,首先确认channel是否关闭 if c.closed != 0 { goto sclose } // 而后判断,recvq队列里面有没有等待接收数据的sudog,有则跳转到 send 标签 sg = c.recvq.dequeue() if sg != nil { goto send } // 判断是否有空余的buf位置,可让本身把数据放上去,若是有,则跳转到bufsend标签 if c.qcount < c.dataqsiz { goto bufsend } case caseDefault: // 更新并记录 case的索引及地址 dfli = casi dfl = cas } } // 根据 dfl 来判断是否有 default,而且走到了 // 在全部 case遍历完成后,若是不须要等待,都会跳转到相应的标签,例如 recv bufrecv send等,若是走到这里,说明全部的case都没法直接获取或发送数据,等待另外一个g的就绪 if dfl != nil { selunlock(scases, lockorder) casi = dfli cas = dfl // 若是有default,直接执行default goto retc } // pass 2 - enqueue on all chans // 流程执行到这里,全部的case都须要等待,且没有default执行 gp = getg() if gp.waiting != nil { throw("gp.waiting != nil") } nextp = &gp.waiting // 按照lockorder,对每一个case,建立相应的sudog并放入case对应的channel的recvq或sendq队列 for _, casei := range lockorder { casi = int(casei) cas = &scases[casi] if cas.kind == caseNil { continue } c = cas.c // 每个case获取一个sudog,绑定到case对应的cahnnel的sendq或recvq队列 sg := acquireSudog() sg.g = gp sg.isSelect = true // No stack splits between assigning elem and enqueuing // sg on gp.waiting where copystack can find it. sg.elem = cas.elem sg.releasetime = 0 if t0 != 0 { sg.releasetime = -1 } sg.c = c // Construct waiting list in lock order. // 按照lockorder,把这些sudog,依赖sudog.waitlink串联起来 *nextp = sg nextp = &sg.waitlink switch cas.kind { case caseRecv: // 若是recv,放入到recvq队列 c.recvq.enqueue(sg) case caseSend: // 若是是send,放入到sendq队列 c.sendq.enqueue(sg) } } // wait for someone to wake us up // 休眠等待唤醒 gp.param = nil gopark(selparkcommit, nil, waitReasonSelect, traceEvGoBlockSelect, 1) // sellock(scases, lockorder) gp.selectDone = 0 sg = (*sudog)(gp.param) gp.param = nil // pass 3 - dequeue from unsuccessful chans // otherwise they stack up on quiet channels // record the successful case, if any. // We singly-linked up the SudoGs in lock order. casi = -1 cas = nil sglist = gp.waiting // Clear all elem before unlinking from gp.waiting. // 在解散waiting这个队列前,先把数据清空,由于执行到这列,确定是由于另外一个goroutine在recv或send 某个channel,而且拿到数据致使的,因此,执行到这里后,数据都没用了 for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink { sg1.isSelect = false sg1.elem = nil sg1.c = nil } gp.waiting = nil for _, casei := range lockorder { k = &scases[casei] if k.kind == caseNil { continue } if sglist.releasetime > 0 { k.releasetime = sglist.releasetime } if sg == sglist { // sg has already been dequeued by the G that woke us up. // 肯定这个sudog致使的自身被唤醒 casi = int(casei) cas = k } else { // 把其余还在等待的sudog从等待队列中移除 c = k.c if k.kind == caseSend { c.sendq.dequeueSudoG(sglist) } else { c.recvq.dequeueSudoG(sglist) } } sgnext = sglist.waitlink sglist.waitlink = nil releaseSudog(sglist) sglist = sgnext } if cas == nil { // 若是cas为nil,说明有可能由于其余因素被唤醒,再循环一次 goto loop } c = cas.c if cas.kind == caseRecv { recvOK = true } selunlock(scases, lockorder) goto retc bufrecv: // can receive from buffer // recv操做,并buf不为空,从buf中获取数据便可 recvOK = true qp = chanbuf(c, c.recvx) if cas.elem != nil { typedmemmove(c.elemtype, cas.elem, qp) } typedmemclr(c.elemtype, qp) // 更新buf中recvx的索引 c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } // 更新buf中数据的数量 c.qcount-- // 解锁当前case selunlock(scases, lockorder) goto retc bufsend: // can send to buffer // send操做,且buf有空余位置存储,把本身的数据拷贝到buf队尾 typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem) // 更新buf中sendx的索引 c.sendx++ if c.sendx == c.dataqsiz { c.sendx = 0 } // 更新buf中数据的数量 c.qcount++ // 解锁当前case selunlock(scases, lockorder) goto retc recv: // can receive from sleeping sender (sg) // recv操做,可是sendq中有sudog在等待,经过recv方法,获取数据 recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2) recvOK = true goto retc rclose: // read at end of closed channel // recv 操做,可是这个channel已经close了 selunlock(scases, lockorder) recvOK = false if cas.elem != nil { typedmemclr(c.elemtype, cas.elem) } goto retc send: // can send to a sleeping receiver (sg) // send操做,可是recvq队列中有在等待的sudog send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2) goto retc retc: // 返回 return casi, recvOK sclose: // send on closed channel selunlock(scases, lockorder) panic(plainError("send on closed channel")) }
当一个select里面只有一个 case,且这个case 是接收数据的操做的时候,select就会调用 selectnbrecv
函数来实现
func selectnbrecv(elem unsafe.Pointer, c *hchan) (selected bool) { selected, _ = chanrecv(c, elem, false) return }
这里就会发现 selectnbrecv
就是调用了 chanrecv
来实现,也就是咱们上面解析的 <- c1
是同样的,就至关于 select 退变 成单独的 <- c
的表达了
同 selectnbrecv
同样,当select只有一个case,且这个case是发送数据到channel的,就会退变成 c <- 1
的表达了
func selectnbsend(c *hchan, elem unsafe.Pointer) (selected bool) { return chansend(c, elem, false, getcallerpc()) }
因此,select的流程大体以下
我仍是很像吐槽一下,selectgo
函数华丽丽的写了300多行,里面还使用了若干的 goto
去进行跳转,真的不能够分拆一下吗,不过大神的代码,仍是真的须要膜拜的