原文连接: http://www.pilishen.com/posts...
咱们都曾在数据库中处理过层级数据-这种数据中的每项都有一个父项和(0或多个)子项,根项除外。好比:论坛和邮件列表中的分类、商业组织结构表、内容管理系统的分类和产品分类等等。
在关系型数据库中处理层级数据时咱们总会以为关系型数据库不是为处理层级数据设计的,由于关系型数据库的数据表不像XML具备层级,而是一个简单的扁平化的表。因此层级数据的这种父-子关系不能在数据表中天然的展示出来。node
下面咱们介绍两种在关系型数据库中处理层级数据的模型:数据库
咱们如下图的电子产品分类为例electron
一般上面的产品分类会像下面这样来设计表结构并被储存:函数
CREATE TABLE category( category_id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20) NOT NULL, parent INT DEFAULT NULL ); INSERT INTO category VALUES(1,'ELECTRONICS',NULL),(2,'TELEVISIONS',1),(3,'TUBE',2), (4,'LCD',2),(5,'PLASMA',2),(6,'PORTABLE ELECTRONICS',1),(7,'MP3 PLAYERS',6),(8,'FLASH',7), (9,'CD PLAYERS',6),(10,'2 WAY RADIOS',6); SELECT * FROM category ORDER BY category_id; +-------------+----------------------+--------+ | category_id | name | parent | +-------------+----------------------+--------+ | 1 | ELECTRONICS | NULL | | 2 | TELEVISIONS | 1 | | 3 | TUBE | 2 | | 4 | LCD | 2 | | 5 | PLASMA | 2 | | 6 | PORTABLE ELECTRONICS | 1 | | 7 | MP3 PLAYERS | 6 | | 8 | FLASH | 7 | | 9 | CD PLAYERS | 6 | | 10 | 2 WAY RADIOS | 6 | +-------------+----------------------+--------+ 10 rows in set (0.00 sec)
在邻接表模型中,表中的每条记录都包含一个指向父项id的字段。根项也就是这里的electronics的父项id为null,这种表结构很是的简单,并且咱们很清楚的看到:flash的父项是MP3 , MP3的父项是protable electronics、protable electronics 的父项是electronics等等。虽然在客户端编码中邻接表模型处理起来也至关的简单,可是若是是纯SQL编码的话,该模型会有不少问题。post
检索整个树是处理层级数据最多见的任务,为了完成这个最经常使用的方法是经过自链接(self-join):性能
SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4 FROM category AS t1 LEFT JOIN category AS t2 ON t2.parent = t1.category_id LEFT JOIN category AS t3 ON t3.parent = t2.category_id LEFT JOIN category AS t4 ON t4.parent = t3.category_id WHERE t1.name = 'ELECTRONICS'; +-------------+----------------------+--------------+-------+ | lev1 | lev2 | lev3 | lev4 | +-------------+----------------------+--------------+-------+ | ELECTRONICS | TELEVISIONS | TUBE | NULL | | ELECTRONICS | TELEVISIONS | LCD | NULL | | ELECTRONICS | TELEVISIONS | PLASMA | NULL | | ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH | | ELECTRONICS | PORTABLE ELECTRONICS | CD PLAYERS | NULL | | ELECTRONICS | PORTABLE ELECTRONICS | 2 WAY RADIOS | NULL | +-------------+----------------------+--------------+-------+ 6 rows in set (0.00 sec)
咱们能够经过左链接(left-join)检索出全部的叶子节点(没有子节点的节点):网站
SELECT t1.name FROM category AS t1 LEFT JOIN category as t2 ON t1.category_id = t2.parent WHERE t2.category_id IS NULL; +--------------+ | name | +--------------+ | TUBE | | LCD | | PLASMA | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +--------------+
自链接一样可让我检索出层级结构中的一条完整的层级路径编码
SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4 FROM category AS t1 LEFT JOIN category AS t2 ON t2.parent = t1.category_id LEFT JOIN category AS t3 ON t3.parent = t2.category_id LEFT JOIN category AS t4 ON t4.parent = t3.category_id WHERE t1.name = 'ELECTRONICS' AND t4.name = 'FLASH'; +-------------+----------------------+-------------+-------+ | lev1 | lev2 | lev3 | lev4 | +-------------+----------------------+-------------+-------+ | ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH | +-------------+----------------------+-------------+-------+ 1 row in set (0.01 sec)
这个方法的主要局限性在于对于层级结构中的每一层都要自链接,而且随着层级的增长这种自链接将变的愈来愈复杂也就天然的影响着性能。spa
在纯SQL中使用邻接表模型会很困难,若是想检索某个分类在层级结构中的路径就须要事先知道它在层级结构中所处的层级,此外当进行删除某项操做时须要很是当心,由于在删除的过程当中可能会致使出现整个的孤立的子树(删除portable electronics 会使它下面全部的子项变孤立)。其中一些局限能够经过使用客户端编码或Stored Procedure(存储过程是一组为了完成特定功能的SQL语句集,经编译后存储在数据库中,用户经过指定存储过程的名字并给定参数来调用执行它)来解决。使用面向过程的语言,咱们能够从树的底部开始,向上迭代返回完整的树或一条路径。咱们也能够经过提高子项和对剩下的子项从新排序以使之指向新的父项来避免产生孤立的子树。设计
本篇文章将聚焦于嵌套集合模型,在这种模型中咱们能够以一种新的方式来看待咱们的层级数据,不是以节点和节点之间的线,而是以一种嵌套容器的方式,试着如下面的方式来展现咱们的电器分类:
注意咱们是怎么实现层级结构的,父项包含它们全部的子节点。咱们经过使用左值和右值来在数据表上表示这种形式的层级结构,以此表示项目的嵌套关系
CREATE TABLE nested_category ( category_id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20) NOT NULL, lft INT NOT NULL, rgt INT NOT NULL ); INSERT INTO nested_category VALUES(1,'ELECTRONICS',1,20),(2,'TELEVISIONS',2,9),(3,'TUBE',3,4), (4,'LCD',5,6),(5,'PLASMA',7,8),(6,'PORTABLE ELECTRONICS',10,19),(7,'MP3 PLAYERS',11,14),(8,'FLASH',12,13), (9,'CD PLAYERS',15,16),(10,'2 WAY RADIOS',17,18); SELECT * FROM nested_category ORDER BY category_id; +-------------+----------------------+-----+-----+ | category_id | name | lft | rgt | +-------------+----------------------+-----+-----+ | 1 | ELECTRONICS | 1 | 20 | | 2 | TELEVISIONS | 2 | 9 | | 3 | TUBE | 3 | 4 | | 4 | LCD | 5 | 6 | | 5 | PLASMA | 7 | 8 | | 6 | PORTABLE ELECTRONICS | 10 | 19 | | 7 | MP3 PLAYERS | 11 | 14 | | 8 | FLASH | 12 | 13 | | 9 | CD PLAYERS | 15 | 16 | | 10 | 2 WAY RADIOS | 17 | 18 | +-------------+----------------------+-----+-----+
咱们使用lft和rgt来表示左值和右值,然而咱们怎么肯定这两个值呢?咱们从外出节点最左边向右边编号:
这种设计也能够运用在经典树上:
因为一个节点的左值永远在其父节点的左值和右值之间,因此咱们能够经过自链接来检索一整个树:
SELECT node.name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND parent.name = 'ELECTRONICS' ORDER BY node.lft; +----------------------+ | name | +----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +----------------------+
不想上面邻接表模型中的例子,这种查询不须要知道树的深度,咱们也不须要在乎是否须要在BETWEEN语句中加上节点右值的判断语句,由于右值老是与左值处于相同的父项下。
在嵌套集合模型中检索叶子节点也比在邻接表模型中使用左链接方法要简单得多。若是你仔细观察nested_category表,你会发现全部的叶子节点的左值与右值是两个连续的数字,全部为了检索叶子节点,咱们只须要检索那些rgt = lft +1 的节点就好了:
SELECT name FROM nested_category WHERE rgt = lft + 1; +--------------+ | name | +--------------+ | TUBE | | LCD | | PLASMA | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +--------------+
使用嵌套集合模型,咱们能够检索一条路径而不须要以前那样复杂的屡次自链接:
SELECT parent.name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'FLASH' ORDER BY parent.lft; +----------------------+ | name | +----------------------+ | ELECTRONICS | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | +----------------------+
咱们已经了解了怎么检索整个树,可是若是咱们还须要知道树中的每一个节点的深度,以便更好的肯定层级结构中的各个节点到底处于什么位置怎么办呢? 咱们能够经过增长COUNT函数和一条GROUP BY 语句到咱们已存在的查询语句中来实现显示整个树:
SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | ELECTRONICS | 0 | | TELEVISIONS | 1 | | TUBE | 2 | | LCD | 2 | | PLASMA | 2 | | PORTABLE ELECTRONICS | 1 | | MP3 PLAYERS | 2 | | FLASH | 3 | | CD PLAYERS | 2 | | 2 WAY RADIOS | 2 | +----------------------+-------+
咱们可使用CONCAT和REPEAT字符串函数来根据深度缩进分类名称:
SELECT CONCAT( REPEAT(' ', COUNT(parent.name) - 1), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +-----------------------+ | name | +-----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +-----------------------+
固然,你能够利用深度值直接在客户端应用程序上展示层级结构。Web开发者能够遍历树,并根据深度值的变化增长 <li></li>
和<ul></ul>
标签。
当咱们须要子树的深度信息时,咱们不能在自链接中限制节点或父表,由于它会破坏咱们的结果。相反,咱们添加了一个第三自链接,以及一个子查询以肯定这个深度将做为子树的新起点:
SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth FROM nested_category AS node, nested_category AS parent, nested_category AS sub_parent, ( SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'PORTABLE ELECTRONICS' GROUP BY node.name ORDER BY node.lft )AS sub_tree WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt AND sub_parent.name = sub_tree.name GROUP BY node.name ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | PORTABLE ELECTRONICS | 0 | | MP3 PLAYERS | 1 | | FLASH | 2 | | CD PLAYERS | 1 | | 2 WAY RADIOS | 1 | +----------------------+-------+
这个函数能够被运用到任何节点上,包括根节点。查询的深度值老是相对应该指定节点。
假设你正在一个零售网站上展现电子产品分类。当一个用户点击一个分类后,你想要显示那个分类下面的产品并列出它们的子分类,而不是它们下面的完整分类树,为了达到目的,咱们须要显示它的直接子节点。可是不向下更进一步检索。例如:咱们显示PORTABLE ELECTRONICS 分类,咱们想显示P3 PLAYERS, CD PLAYERS, 和2 WAY RADIOS,可是不想显示FLASH。
咱们能够在以前的语句上添加一条HABING语句来轻松实现:
SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth FROM nested_category AS node, nested_category AS parent, nested_category AS sub_parent, ( SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'PORTABLE ELECTRONICS' GROUP BY node.name ORDER BY node.lft )AS sub_tree WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt AND sub_parent.name = sub_tree.name GROUP BY node.name HAVING depth <= 1 ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | PORTABLE ELECTRONICS | 0 | | MP3 PLAYERS | 1 | | CD PLAYERS | 1 | | 2 WAY RADIOS | 1 | +----------------------+-------+
若是想显示父节点,将HAVING depth <= 1
改成HAVING depth = 1
。
让咱们添加一个产品表来演示聚合函数:
CREATE TABLE product ( product_id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(40), category_id INT NOT NULL ); INSERT INTO product(name, category_id) VALUES('20" TV',3),('36" TV',3), ('Super-LCD 42"',4),('Ultra-Plasma 62"',5),('Value Plasma 38"',5), ('Power-MP3 5gb',7),('Super-Player 1gb',8),('Porta CD',9),('CD To go!',9), ('Family Talk 360',10); SELECT * FROM product; +------------+-------------------+-------------+ | product_id | name | category_id | +------------+-------------------+-------------+ | 1 | 20" TV | 3 | | 2 | 36" TV | 3 | | 3 | Super-LCD 42" | 4 | | 4 | Ultra-Plasma 62" | 5 | | 5 | Value Plasma 38" | 5 | | 6 | Power-MP3 128mb | 7 | | 7 | Super-Shuffle 1gb | 8 | | 8 | Porta CD | 9 | | 9 | CD To go! | 9 | | 10 | Family Talk 360 | 10 | +------------+-------------------+-------------+
如今让咱们来写一套查询语句来检索带有各分类产品数量的分类树:
SELECT parent.name, COUNT(product.name) FROM nested_category AS node , nested_category AS parent, product WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.category_id = product.category_id GROUP BY parent.name ORDER BY node.lft; +----------------------+---------------------+ | name | COUNT(product.name) | +----------------------+---------------------+ | ELECTRONICS | 10 | | TELEVISIONS | 5 | | TUBE | 2 | | LCD | 1 | | PLASMA | 2 | | PORTABLE ELECTRONICS | 5 | | MP3 PLAYERS | 2 | | FLASH | 1 | | CD PLAYERS | 2 | | 2 WAY RADIOS | 1 | +----------------------+---------------------+
这是咱们典型的整树查询语句,包含一个COUNT函数和GROUP BY 函数,以及产品表的引用和在WHERE语句中对node和product表的关联。就像你看到的,每一个分类都计数,子分类的产品数量在父分类上反应出来
既然咱们以及学会了怎么检索咱们的树,接下来咱们来了解下怎么添加新的节点到咱们的树中,咱们再来看看下面的图表:
若是我想在TELEVISIONS 和PORTABLE ELECTRONICS 中间添加新的节点,那么这个新的节点将会给予lft 和 rgt 分别为10和11(咱们是从左向右编号的),它右边全部的节点的lft和rgt值都将加2,这些可使用MySql储存过程解决:
LOCK TABLE nested_category WRITE; SELECT @myRight := rgt FROM nested_category WHERE name = 'TELEVISIONS'; UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myRight; UPDATE nested_category SET lft = lft + 2 WHERE lft > @myRight; INSERT INTO nested_category(name, lft, rgt) VALUES('GAME CONSOLES', @myRight + 1, @myRight + 2); UNLOCK TABLES;
We can then check our nesting with our indented tree query:
SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +-----------------------+ | name | +-----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | GAME CONSOLES | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +-----------------------+
若是咱们想给一个没有子节点的节点添加一个子节点,咱们须要稍微改改咱们的语句。让咱们在 2 WAY RADIOS节点下面添加新的FRS节点:
LOCK TABLE nested_category WRITE; SELECT @myLeft := lft FROM nested_category WHERE name = '2 WAY RADIOS'; UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myLeft; UPDATE nested_category SET lft = lft + 2 WHERE lft > @myLeft; INSERT INTO nested_category(name, lft, rgt) VALUES('FRS', @myLeft + 1, @myLeft + 2); UNLOCK TABLES;
在这个例子中咱们将咱们新的父节点的左值右边的值所有扩大。而后将改节点插入到父节点左值的右边:
SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +-----------------------+ | name | +-----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | GAME CONSOLES | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | | FRS | +-----------------------+
最后咱们了解下移除节点。删除节点时所采起的操做过程取决于节点在层级结构中的位置;删除叶节点比删除带有子节点的节点要容易得多,由于咱们必须处理孤立的节点
删除叶子节点的过程与添加新的节点正好相反,咱们删除该节点而且删除父节点中它的宽度:
LOCK TABLE nested_category WRITE; SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM nested_category WHERE name = 'GAME CONSOLES'; DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight; UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight; UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight; UNLOCK TABLES;
咱们再次执行咱们上面的缩进树的查询语句来确认咱们删除了节点且没有破坏层级结构:
SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +-----------------------+ | name | +-----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | | FRS | +-----------------------+
这个方法对删除节点和它的子节点一样有效:
LOCK TABLE nested_category WRITE; SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM nested_category WHERE name = 'MP3 PLAYERS'; DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight; UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight; UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight; UNLOCK TABLES;
咱们再次查询以验证咱们成功的删除了整个子树:
SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +-----------------------+ | name | +-----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | CD PLAYERS | | 2 WAY RADIOS | | FRS | +-----------------------+
另外一个场景是咱们须要删除父节点,可是须要保留它的子节点。有时你可能会仅仅是将它的名称改成一个占位符直到新的名称来替换它,有时这些子节点须要提高到被删除的父节点的层级:
LOCK TABLE nested_category WRITE; SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM nested_category WHERE name = 'PORTABLE ELECTRONICS'; DELETE FROM nested_category WHERE lft = @myLeft; UPDATE nested_category SET rgt = rgt - 1, lft = lft - 1 WHERE lft BETWEEN @myLeft AND @myRight; UPDATE nested_category SET rgt = rgt - 2 WHERE rgt > @myRight; UPDATE nested_category SET lft = lft - 2 WHERE lft > @myRight; UNLOCK TABLES;
这里咱们改节点右侧的节点的左右值所有减去2,该节点的全部子节点的左右值所有减去1,咱们再次来验证下这些元素有没有被提高:
SELECT CONCAT( REPEAT( ' ', (COUNT(parent.name) - 1) ), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +---------------+ | name | +---------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | CD PLAYERS | | 2 WAY RADIOS | | FRS | +---------------+
相对于邻接表模型,嵌套集合模型在层级数据的查询中具备极大的优点,而在数据的插入和删除操做时则根据插入或删除数据的位置的不一样,可能须要更新不少节点甚至是整个树的左右值,从而影响数据库的性能。对于客户端须要频繁修改表的程序咱们应该避免使用嵌套集合模型,而对于客户端须要频繁的查询表的程序咱们应当使用它,像商城的产品分类表,表的数据只是在后台维护,而大量的用户会产生大量的查询。