前言:随之vue3.0beta版本的发布,vue3.0正式版本相信不久就会与咱们相遇。尤玉溪在直播中也说了vue3.0的新特性typescript强烈支持,proxy响应式原理,从新虚拟dom,优化diff算法性能提高等等。小编在这里仔细研究了vue3.0beta版本diff算法的源码,并但愿把其中的细节和奥妙和你们一块儿分享。html
首先咱们来思考一些大中厂面试中,很容易问到的问题:vue
1 何时用到diff算法,diff算法做用域在哪里? 2 diff算法是怎么运做的,到底有什么做用? 3 在v-for 循环列表 key 的做用是什么 4 用索引index作key真的有用? 到底用什么作key才是最佳方案。node
若是遇到这些问题,你们是怎么回答的呢?我相信当你读完这篇文章,这些问题也会迎刃而解。面试
patch概念引入算法
在vue update过程当中在遍历子代vnode的过程当中,会用不一样的patch方法来patch新老vnode,若是找到对应的 newVnode 和 oldVnode,就能够复用利用里面的真实dom节点。避免了重复建立元素带来的性能开销。毕竟浏览器创造真实的dom,操纵真实的dom,性能代价是昂贵的。typescript
patch过程当中,若是面对当前vnode存在有不少chidren的状况,那么须要分别遍历patch新的children Vnode和老的 children vnode。后端
存在chidren的vnode类型数组
首先思考一下什么类型的vnode会存在children。浏览器
①element元素类型vnode微信
第一中状况就是element类型vnode 会存在 children vode,此时的三个span标签就是chidren vnode状况
<div>
<span> 苹果🍎 </span>
<span> 香蕉🍌 </span>
<span> 鸭梨🍐 </span>
</div>
复制代码
在vue3.0源码中 ,patchElement用于处理element类型的vnode
②flagment碎片类型vnode
在Vue3.0中,引入了一个fragment碎片概念。 你可能会问,什么是碎片?若是你建立一个Vue组件,那么它只能有一个根节点。
<template>
<span> 苹果🍎 </span>
<span> 香蕉🍌 </span>
<span> 鸭梨🍐 </span>
</template>
复制代码
这样可能会报出警告,缘由是表明任何Vue组件的Vue实例须要绑定到一个单一的DOM元素中。惟一能够建立一个具备多个DOM节点的组件的方法就是建立一个没有底层Vue实例的功能组件。
flagment出现就是用看起来像一个普通的DOM元素,但它是虚拟的,根本不会在DOM树中呈现。这样咱们能够将组件功能绑定到一个单一的元素中,而不须要建立一个多余的DOM节点。
<Fragment>
<span> 苹果🍎 </span>
<span> 香蕉🍌 </span>
<span> 鸭梨🍐 </span>
</Fragment>
复制代码
在vue3.0源码中 ,processFragment用于处理Fragment类型的vnode
从上文中咱们得知了存在children的vnode类型,那么存在children就须要patch每个 children vnode依次向下遍历。那么就须要一个patchChildren方法,依次patch子类vnode。
patchChildren
vue3.0中 在patchChildren方法中有这么一段源码
if (patchFlag > 0) {
if (patchFlag & PatchFlags.KEYED_FRAGMENT) {
/* 对于存在key的状况用于diff算法 */
patchKeyedChildren(
c1 as VNode[],
c2 as VNodeArrayChildren,
container,
anchor,
parentComponent,
parentSuspense,
isSVG,
optimized
)
return
} else if (patchFlag & PatchFlags.UNKEYED_FRAGMENT) {
/* 对于不存在key的状况,直接patch */
patchUnkeyedChildren(
c1 as VNode[],
c2 as VNodeArrayChildren,
container,
anchor,
parentComponent,
parentSuspense,
isSVG,
optimized
)
return
}
}
复制代码
patchChildren根据是否存在key进行真正的diff或者直接patch。
既然diff算法存在patchChildren方法中,而patchChildren方法用在Fragment类型和element类型的vnode中,这样也就解释了diff算法的做用域是什么。
经过前言咱们知道,存在这children的状况的vnode,须要经过patchChildren遍历children依次进行patch操做,若是在patch期间,再发现存在vnode状况,那么会递归的方式依次向下patch,那么找到与新的vnode对应的vnode显的如此重要。
咱们用两幅图来向你们展现vnode变化。
如上两幅图表示在一次更新中新老dom树变化状况。
假设不存在diff算法,依次按照前后顺序patch会发生什么
若是不存在diff算法,而是直接patchchildren 就会出现以下图的逻辑。
第一次patchChidren 第二次patchChidren
第三次patchChidren‘
第四次patchChidren
若是没有用到diff算法,而是依次patch虚拟dom树,那么如上稍微修改dom顺序,就会在patch过程当中没有一对正确的新老vnode,因此老vnode的节点没有一个能够复用,这样就须要从新创造新的节点,浪费了性能开销,这显然不是咱们须要的。
那么diff算法的做用就来了。
diff做用就是在patch子vnode过程当中,找到与新vnode对应的老vnode,复用真实的dom节点,避免没必要要的性能开销
在正式讲diff算法以前,在patchChildren的过程当中,存在 patchKeyedChildren patchUnkeyedChildren
patchKeyedChildren 是正式的开启diff的流程,那么patchUnkeyedChildren的做用是什么呢? 咱们来看看针对没有key的状况patchUnkeyedChildren会作什么。
c1 = c1 || EMPTY_ARR
c2 = c2 || EMPTY_ARR
const oldLength = c1.length
const newLength = c2.length
const commonLength = Math.min(oldLength, newLength)
let i
for (i = 0; i < commonLength; i++) { /* 依次遍历新老vnode进行patch */
const nextChild = (c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i]))
patch(
c1[i],
nextChild,
container,
null,
parentComponent,
parentSuspense,
isSVG,
optimized
)
}
if (oldLength > newLength) { /* 老vnode 数量大于新的vnode,删除多余的节点 */
unmountChildren(c1, parentComponent, parentSuspense, true, commonLength)
} else { /* /* 老vnode 数量小于于新的vnode,创造新的即诶安 */
mountChildren(
c2,
container,
anchor,
parentComponent,
parentSuspense,
isSVG,
optimized,
commonLength
)
}
复制代码
咱们能够获得结论,对于不存在key状况 ① 比较新老children的length获取最小值 而后对于公共部分,进行重新patch工做。 ② 若是老节点数量大于新的节点数量 ,移除多出来的节点。 ③ 若是新的节点数量大于老节点的数量,重新 mountChildren新增的节点。
那么对于存在key状况呢? 会用到diff算法 , diff算法作了什么呢?
patchKeyedChildren方法究竟作了什么? 咱们先来看看一些声明的变量。
/* c1 老的vnode c2 新的vnode */
let i = 0 /* 记录索引 */
const l2 = c2.length /* 新vnode的数量 */
let e1 = c1.length - 1 /* 老vnode 最后一个节点的索引 */
let e2 = l2 - 1 /* 新节点最后一个节点的索引 */
复制代码
(a b) c (a b) d e
/* 从头对比找到有相同的节点 patch ,发现不一样,当即跳出*/
while (i <= e1 && i <= e2) {
const n1 = c1[i]
const n2 = (c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i]))
/* 判断key ,type是否相等 */
if (isSameVNodeType(n1, n2)) {
patch(
n1,
n2,
container,
parentAnchor,
parentComponent,
parentSuspense,
isSVG,
optimized
)
} else {
break
}
i++
}
复制代码
第一步的事情就是从头开始寻找相同的vnode,而后进行patch,若是发现不是相同的节点,那么当即跳出循环。
具体流程如图所示
isSameVNodeType
export function isSameVNodeType(n1: VNode, n2: VNode): boolean {
return n1.type === n2.type && n1.key === n2.key
}
复制代码
isSameVNodeType 做用就是判断当前vnode类型 和 vnode的 key是否相等
a (b c) d e (b c)
/* 若是第一步没有patch完,当即,从后往前开始patch ,若是发现不一样当即跳出循环 */
while (i <= e1 && i <= e2) {
const n1 = c1[e1]
const n2 = (c2[e2] = optimized
? cloneIfMounted(c2[e2] as VNode)
: normalizeVNode(c2[e2]))
if (isSameVNodeType(n1, n2)) {
patch(
n1,
n2,
container,
parentAnchor,
parentComponent,
parentSuspense,
isSVG,
optimized
)
} else {
break
}
e1--
e2--
}
复制代码
经历第一步操做以后,若是发现没有patch完,那么当即进行第二部,从尾部开始遍历依次向前diff。
若是发现不是相同的节点,那么当即跳出循环。
具体流程如图所示
③④主要针对新增和删除元素的状况,前提是元素没有发生移动, 若是有元素发生移动就要走⑤逻辑。
(a b) (a b) c i = 2, e1 = 1, e2 = 2 (a b) c (a b) i = 0, e1 = -1, e2 = 0
/* 若是新的节点大于老的节点数 ,对于剩下的节点所有以新的vnode处理( 这种状况说明已经patch完相同的vnode ) */
if (i > e1) {
if (i <= e2) {
const nextPos = e2 + 1
const anchor = nextPos < l2 ? (c2[nextPos] as VNode).el : parentAnchor
while (i <= e2) {
patch( /* 建立新的节点*/
null,
(c2[i] = optimized
? cloneIfMounted(c2[i] as VNode)
: normalizeVNode(c2[i])),
container,
anchor,
parentComponent,
parentSuspense,
isSVG
)
i++
}
}
}
复制代码
i > e1
若是新的节点大于老的节点数 ,对于剩下的节点所有以新的vnode处理( 这种状况说明已经patch完相同的vnode ),也就是要所有create新的vnode.
具体逻辑如图所示
i > e2
(a b) c
(a b)
i = 2, e1 = 2, e2 = 1
a (b c)
(b c)
i = 0, e1 = 0, e2 = -1
else if (i > e2) {
while (i <= e1) {
unmount(c1[i], parentComponent, parentSuspense, true)
i++
}
}
复制代码
对于老的节点大于新的节点的状况 ,对于超出的节点所有卸载 ( 这种状况说明已经patch完相同的vnode )
具体逻辑如图所示
diff核心
在①②状况下没有遍历完的节点以下图所示。
剩下的节点。
const s1 = i //第一步遍历到的index
const s2 = i
const keyToNewIndexMap: Map<string | number, number> = new Map()
/* 把没有比较过的新的vnode节点,经过map保存 */
for (i = s2; i <= e2; i++) {
if (nextChild.key != null) {
keyToNewIndexMap.set(nextChild.key, i)
}
}
let j
let patched = 0
const toBePatched = e2 - s2 + 1 /* 没有通过 path 新的节点的数量 */
let moved = false /* 证实是否 */
let maxNewIndexSoFar = 0
const newIndexToOldIndexMap = new Array(toBePatched)
for (i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
/* 创建一个数组,每一个子元素都是0 [ 0, 0, 0, 0, 0, 0, ] */
复制代码
遍历全部新节点把索引和对应的key,存入map keyToNewIndexMap中
keyToNewIndexMap 存放 key -> index 的map
D : 2 E : 3 C : 4 I : 5
接下来声明一个新的指针 j,记录剩下新的节点的索引。 patched ,记录在第⑤步patched新节点过的数量 toBePatched 记录⑤步以前,没有通过patched 新的节点的数量。 moved表明是否发生过移动,我们的demo是已经发生过移动的。
newIndexToOldIndexMap 用来存放新节点索引和老节点索引的数组。 newIndexToOldIndexMap 数组的index是新vnode的索引 , value是老vnode的索引。
接下来
for (i = s1; i <= e1; i++) { /* 开始遍历老节点 */
const prevChild = c1[i]
if (patched >= toBePatched) { /* 已经patch数量大于等于, */
/* ① 若是 toBePatched新的节点数量为0 ,那么统一卸载老的节点 */
unmount(prevChild, parentComponent, parentSuspense, true)
continue
}
let newIndex
/* ② 若是,老节点的key存在 ,经过key找到对应的index */
if (prevChild.key != null) {
newIndex = keyToNewIndexMap.get(prevChild.key)
} else { /* ③ 若是,老节点的key不存在 */
for (j = s2; j <= e2; j++) { /* 遍历剩下的全部新节点 */
if (
newIndexToOldIndexMap[j - s2] === 0 && /* newIndexToOldIndexMap[j - s2] === 0 新节点没有被patch */
isSameVNodeType(prevChild, c2[j] as VNode)
) { /* 若是找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex */
newIndex = j
break
}
}
}
if (newIndex === undefined) { /* ①没有找到与老节点对应的新节点,删除当前节点,卸载全部的节点 */
unmount(prevChild, parentComponent, parentSuspense, true)
} else {
/* ②把老节点的索引,记录在存放新节点的数组中, */
newIndexToOldIndexMap[newIndex - s2] = i + 1
if (newIndex >= maxNewIndexSoFar) {
maxNewIndexSoFar = newIndex
} else {
/* 证实有节点已经移动了 */
moved = true
}
/* 找到新的节点进行patch节点 */
patch(
prevChild,
c2[newIndex] as VNode,
container,
null,
parentComponent,
parentSuspense,
isSVG,
optimized
)
patched++
}
}
复制代码
这段代码算是diff算法的核心。
第一步: 经过老节点的key找到对应新节点的index:开始遍历老的节点,判断有没有key, 若是存在key经过新节点的keyToNewIndexMap找到与新节点index,若是不存在key那么会遍历剩下来的新节点试图找到对应index。
第二步:若是存在index证实有对应的老节点,那么直接复用老节点进行patch,没有找到与老节点对应的新节点,删除当前老节点。
第三步:newIndexToOldIndexMap找到对应新老节点关系。
到这里,咱们patch了一遍,把全部的老vnode都patch了一遍。
如图所示 可是接下来的问题。
1 虽然已经patch过全部的老节点。能够对于已经发生移动的节点,要怎么真正移动dom元素。 2 对于新增的节点,(图中节点I)并无处理,应该怎么处理。
/*移动老节点建立新节点*/
/* 根据最长稳定序列移动相对应的节点 */
const increasingNewIndexSequence = moved
? getSequence(newIndexToOldIndexMap)
: EMPTY_ARR
j = increasingNewIndexSequence.length - 1
for (i = toBePatched - 1; i >= 0; i--) {
const nextIndex = s2 + i
const nextChild = c2[nextIndex] as VNode
const anchor =
nextIndex + 1 < l2 ? (c2[nextIndex + 1] as VNode).el : parentAnchor
if (newIndexToOldIndexMap[i] === 0) { /* 没有老的节点与新的节点对应,则建立一个新的vnode */
patch(
null,
nextChild,
container,
anchor,
parentComponent,
parentSuspense,
isSVG
)
} else if (moved) {
if (j < 0 || i !== increasingNewIndexSequence[j]) { /*若是没有在长*/
/* 须要移动的vnode */
move(nextChild, container, anchor, MoveType.REORDER)
} else {
j--
}
复制代码
首选经过getSequence获得一个最长稳定序列,对于index === 0 的状况也就是新增节点(图中I) 须要重新mount一个新的vnode,而后对于发生移动的节点进行统一的移动操做
什么叫作最长稳定序列
对于如下的原始序列 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 最长递增子序列为 0, 2, 6, 9, 11, 15.
为何要获得最长稳定序列
由于咱们须要一个序列做为基础的参照序列,其余未在稳定序列的节点,进行移动。
通过上述咱们大体知道了diff算法的流程
1 从头对比找到有相同的节点 patch ,发现不一样,当即跳出。
2若是第一步没有patch完,当即,从后往前开始patch ,若是发现不一样当即跳出循环。
3若是新的节点大于老的节点数 ,对于剩下的节点所有以新的vnode处理( 这种状况说明已经patch完相同的vnode )。
4 对于老的节点大于新的节点的状况 , 对于超出的节点所有卸载 ( 这种状况说明已经patch完相同的vnode )。
5不肯定的元素( 这种状况说明没有patch完相同的vnode ) 与 3 ,4对立关系。
1 把没有比较过的新的vnode节点,经过map保存
记录已经patch的新节点的数量 patched 没有通过 path 新的节点的数量 toBePatched 创建一个数组newIndexToOldIndexMap,每一个子元素都是[ 0, 0, 0, 0, 0, 0, ] 里面的数字记录老节点的索引 ,数组索引就是新节点的索引
开始遍历老节点
① 若是 toBePatched新的节点数量为0 ,那么统一卸载老的节点.
② 若是,老节点的key存在 ,经过key找到对应的index
③ 若是,老节点的key不存在 1 遍历剩下的全部新节点 2 若是找到与当前老节点对应的新节点那么 ,将新节点的索引,赋值给newIndex
④ 没有找到与老节点对应的新节点,卸载当前老节点。
⑤ 若是找到与老节点对应的新节点,把老节点的索引,记录在存放新节点的数组中,
1 若是节点发生移动 记录已经移动了 2 patch新老节点 找到新的节点进行patch节点
遍历结束
若是发生移动
① 根据 newIndexToOldIndexMap 新老节点索引列表找到最长稳定序列
② 对于 newIndexToOldIndexMap -item =0 证实不存在老节点 ,重新造成新的vnode
③ 对于发生移动的节点进行移动处理。
复制代码
在咱们上述diff算法中,经过isSameVNodeType方法判断,来判断key是否相等判断新老节点。 那么由此咱们能够总结出?
在v-for循环中,key的做用是:经过判断newVnode和OldVnode的key是否相等,从而复用与新节点对应的老节点,节约性能的开销。
用index作key的效果实际和没有用diff算法是同样的,为何这么说呢,下面我就用一幅图来讲明:
若是所示当咱们用index做为key的时候,不管咱们怎么样移动删除节点,到了diff算法中都会从头至尾依次patch(图中:全部节点均未有效的复用)
当已用index拼接其余值做为索引的时候,由于每个节点都找不到对应的key,致使全部的节点都不能复用,全部的新vnode都须要从新建立。都须要从新create
如图所示。
如图所示。每个节点都作到了复用。起到了diff算法的真正做用。
咱们在上面,已经把刚开始的问题通通解决了,最后用一张思惟脑图来重新整理一下整个流程。diff算法,你学会了吗? 微信扫码关注公众号,按期分享技术文章