explain(解释),在 Mysql 中 做为一个关键词,用来解释 Mysql 是如何执行语句,能够链接 select 、delete、insert、update 语句。sql
一般咱们使用 explain 链接 一条 select 语句,查看运行状态,判断是否须要优化。编程
栗子:bash
explain select s.name,s.id,s.age,s.create_time from student s;
函数
输出:性能
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| 1 | SIMPLE | s | NULL | ALL | NULL | NULL | NULL | NULL | 7 | 100.00 | NULL |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)
复制代码
官方:优化
EXPLAIN [explain_type] explainable_stmt
explain_type: {
EXTENDED
| PARTITIONS
| FORMAT = format_name
}
explainable_stmt: {
SELECT statement
| DELETE statement
| INSERT statement
| REPLACE statement
| UPDATE statement
}
复制代码
输出的列名:ui
type 列描述了表的 join 类型,如下以 查询的最优到最差的排序列出了可能值:spa
SELECT * FROM tbl_name WHERE primary_key=1;
SELECT * FROM tbl_name
WHERE primary_key_part1=1 AND primary_key_part2=2;
复制代码
栗子:code
explain select s.* from student s where s.id = 1
复制代码
输出:orm
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
| 1 | SIMPLE | s | NULL | const | PRIMARY | PRIMARY | 8 | const | 1 | 100.00 | NULL |
+----+-------------+-------+------------+-------+---------------+---------+---------+-------+------+----------+-------+
复制代码
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;
复制代码
SELECT * FROM ref_table WHERE key_column=expr;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;
SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;
复制代码
SELECT * FROM ref_table
WHERE key_column=expr OR key_column IS NULL;
复制代码
value IN (SELECT primary_key FROM single_table WHERE some_expr)
复制代码
value IN (SELECT key_column FROM single_table WHERE some_expr)
复制代码
SELECT * FROM tbl_name
WHERE key_column = 10;
SELECT * FROM tbl_name
WHERE key_column BETWEEN 10 and 20;
SELECT * FROM tbl_name
WHERE key_column IN (10,20,30);
SELECT * FROM tbl_name
WHERE key_part1 = 10 AND key_part2 IN (10,20,30);
复制代码
假设有以下的 sql:根据订单日期 和 店员id 查询 订单信息(已建立了订单日期的索引),查询结果返回 18条记录。
SELECT * FROM orders
WHERE YEAR(o_orderdate) = 1992 AND MONTH(o_orderdate) = 4
AND o_clerk LIKE '%0223';
复制代码
Explain 输出执行计划:
问题所在:
SELECT * FROM orders
WHERE o_orderdate BETWEEN '1992-04-01' AND '1992-04-30'
AND o_clerk LIKE '%0223';
复制代码
从新使用 Explain 查看 执行计划:
发现:type 由 ALL 变为 range ,订单日期索引得以利用,被扫描的记录由 15万 降为 3.3万左右。
为 店员字段建立索引:
CREATE INDEX i_o_clerk ON orders(o_clerk);
复制代码
再次输出执行计划:
发现:基本上并无什么变化,新建的索引没有被利用,缘由在于 该字段是 模糊查询,过滤指定后缀的 店员信息。可是索引对于后缀过滤会失效(尽管索引对于前缀有效果)。
修改sql,全量过滤店员字段:
SELECT * FROM orders
WHERE o_orderdate BETWEEN '1992-04-01' AND '1992-04-30'
AND o_clerk LIKE 'Clerk#000000223';
复制代码
再次输出执行计划:
发现:可用索引增长,真正使用的索引变为 店员字段上的索引,被扫描的行由 3.3万降为 1546。
建立以下索引:
CREATE INDEX io_clerk_date ON orders(o_clerk, o_orderdate)
复制代码
** :这里将 o_clerk 放在 o_orderdate 以前,由于 o_orderdate 使用了 范围,最左前缀索引原则。
再次输出执行计划:
发现:使用了组合索引,被扫描记录即为输出的18条记录。效率已最优化。
屡次优化的总结:
Type | Possible keys | Key | Rows Scanned | Duration (seconds) | Extra info | Rows returned |
---|---|---|---|---|---|---|
all | NULL | NULL | 1.50M | 1.201 | Using where | 18 |
range | i_o_orderdate | i_o_orderdate | 32642 | 0.281 | Using index condition; Using where | 18 |
range | i_o_orderdate, i_o_clerk | i_o_clerk | 1546 | 0.234 | Using index condition; Using where | 18 |
range | i_o_orderdate, i_o_clerk, i_o_clerk_date | i_o_clerk_date | 18 | 0.234 | Using index condition | 18 |
欢迎关注 编程那点事儿,随时随地,想学就学~