POJ.3678.Katu Puzzle(2-SAT)

题目连接git

如下转自:zck921031.
对于本题,咱们逐个考虑每一个逻辑运算:.net

一、A AND B=0.这要求A和B不一样时为1。既然不一样时为1,那么A取1时,B必须取0;B取1时,A必须取0.因此,连边A+n->B, B+n->A。code

二、A AND B=1.这要求A和B同时为1。换句话说,A和B不能是0.那要怎么样体如今图中呢?咱们知道,判断一个2-sat问题是否存在合法方案的方法是,缩点后判断有没有两个同组点属于同一个连通份量。blog

咱们须要A和B都必须是1,那么咱们就让A和B必须选0时无解便可。也就是说,连边A->A+n, B->B+n。这样的话,假如构图完成后,A必须取0,那么因为存在边A->A+n,因此A也必须取1,那么就不多是一个合法方案。因此,这两条边能保证,有合法方案的话,必定是A取1(选A+n节点)的状况。get

三、A OR B=0.这要求A和B同时为0.和2相似。it

四、A XOR B=0.这要求A=B。因此,A为0/1时,B必须为0/1,同理B为0/1时,A必须为0/1.因此添加边:A->B,B->A,A+n->B+n,B+n->A+n。io

链接某边是为了推出矛盾。x->y表示选x则必须选y.class

注意数据下标是从0开始的gc

//624K  63MS
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=2005,M=4e6+5;

int n,m,H[N],Enum,nxt[M],to[M];
int top,sk[N],dfn[N],low[N],id,bel[N],cnt;
bool ins[N];

inline int read()
{
    int now=0;register char c=gc();
    for(;!isdigit(c);c=gc());
    for(;isdigit(c);now=now*10+c-'0',c=gc());
    return now;
}
inline void AddEdge(int u,int v){
    to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
void Tarjan(int x)
{
    dfn[x]=low[x]=++id, sk[++top]=x, ins[x]=1;
    for(int v,i=H[x]; i; i=nxt[i])
        if(!dfn[v=to[i]]) Tarjan(v), low[x]=std::min(low[x],low[v]);
        else if(ins[v]) low[x]=std::min(low[x],dfn[v]);
    if(low[x]==dfn[x])
    {
        ++cnt;
        do{
            bel[sk[top]]=cnt, ins[sk[top--]]=0;
        }while(x!=sk[top+1]);
    }
}

int main()
{
    n=read(),m=read();
    int a,b,c; char opt[6];
    for(int i=1; i<=m; ++i)
    {
        a=read()+1,b=read()+1,c=read(),scanf("%s",opt);
        if(opt[0]=='A')
            if(c) AddEdge(a,a+n),AddEdge(b,b+n);
            else AddEdge(a+n,b),AddEdge(b+n,a);
        else if(opt[0]=='O')
            if(c) AddEdge(a,b+n),AddEdge(b,a+n);
            else AddEdge(a+n,a),AddEdge(b+n,b);
        else//Xor
            if(c) AddEdge(a,b+n),AddEdge(b,a+n),AddEdge(a+n,b),AddEdge(b+n,a);
            else AddEdge(a,b),AddEdge(b,a),AddEdge(a+n,b+n),AddEdge(b+n,a+n);
    }
    for(int i=1; i<=n<<1; ++i)
        if(!dfn[i]) Tarjan(i);
    bool f=1;
    for(int i=1; i<=n; ++i)
        if(bel[i]==bel[i+n]) {f=0; break;}
    puts(f?"YES":"NO");

    return 0;
}
相关文章
相关标签/搜索