ML --聚类算法

聚类算法 在无监督学习中,训练样本的标记是没有指定的,通过对无标记样本的训练来探索数据之间的规律。其中应用最广的便是聚类,聚类试图把一群未标记数据划分为一堆不相交的子集,每个子集叫做”簇“,每个簇可能对应于一个类别标签, 评价指标 外部指标 外部指标需要一个参考模型,这个参考模型通常是由专家给定的,或者是公认的参考模型比如公开数据集。对于聚类的结果所形成的簇集合(这里叫做簇C),对于参考模型的簇集
相关文章
相关标签/搜索