Problem :
给一段长度为n的序列,要求找出一段区间,使得这段区间的数字种类除以区间长度最小。输出最后的答案便可。(n <= 60000)(9s时限)
Solution :
显然,答案是0~1中的一个数字,能够很天然的想到二分答案的作法。假设目前二分到的答案为mid,那么须要判断
\[\frac{cnt(l, r)}{r- l + 1} <= mid\]
其中cnt(l,r)为l到r这个区间内的数字种类。变化一下式子能够获得:
\[cnt(l, r) + mid * l <= mid * (r + 1)\]
经过枚举有端点r,使用线段树维护左边的式子,每当右端点r向右移动1时,所影响的区间为r到对应颜色上一次出现的位置,区间总体加1就好了。php
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <string> #include <cmath> #include <algorithm> #include <vector> #include <map> #include <queue> using namespace std; #define eps 1e-10 const int N = 1e5 + 8; int a[N], pre[N]; int n; struct Segment_Tree { double tag[N << 2]; double lazy[N << 2]; void pushup(int rt) { int l = rt << 1, r = rt << 1 | 1; tag[rt] = min(tag[l], tag[r]); } void pushdown(int rt) { int l = rt << 1, r = rt << 1 | 1; if (lazy[rt]) { tag[l] += lazy[rt]; tag[r] += lazy[rt]; lazy[l] += lazy[rt]; lazy[r] += lazy[rt]; lazy[rt] = 0; } } void build(int l, int r, int rt, double x) { tag[rt] = lazy[rt] = 0; if (l == r) { tag[rt] = l * x; return; } int m = l + r >> 1; build(l, m, rt << 1, x); build(m + 1, r, rt << 1 | 1, x); pushup(rt); } void update(int L, int R, int val, int l, int r, int rt) { if (L <= l && r <= R) { tag[rt] = tag[rt] + val; lazy[rt] += val; return; } pushdown(rt); int m = l + r >> 1; if (L <= m) update(L, R, val, l, m, rt << 1); if (m < R) update(L, R, val, m + 1, r, rt << 1 | 1); pushup(rt); } double query(int L, int R, int l, int r, int rt) { if (L <= l && r <= R) { return tag[rt]; } pushdown(rt); int m = l + r >> 1; double ans = 1e12; if (L <= m) ans = min(ans, query(L, R, l, m, rt << 1)); if (m < R) ans = min(ans, query(L, R, m + 1, r, rt << 1 | 1)); return ans; } }T; void init() { cin >> n; for (int i = 1; i <= n; ++i) cin >> a[i]; } int sgn(double x) { if (fabs(x) < eps) return 0; if (x > 0) return 1; return -1; } bool check(double mid) { for (int i = 1; i <= n; ++i) pre[i] = 0; T.build(1, n, 1, mid); for (int i = 1; i <= n; ++i) { T.update(pre[a[i]] + 1, i, 1, 1, n, 1); pre[a[i]] = i; if (sgn(mid * (i + 1) - T.query(1, i, 1, n, 1) >= 0)) return 1; } return 0; } void solve() { double l = 0, r = 1; while (l + eps < r) { double mid = (l + r) / 2; if (check(mid)) r = mid; else l = mid; } printf("%.6f\n", l); } int main() { cin.sync_with_stdio(0); int T; cin >> T; for (int cas = 1; cas <= T; ++cas) { init(); solve(); } }