Given the root
of a binary tree, the depth of each node is the shortest distance to the root.java
Return the smallest subtree such that it contains all the deepest nodes in the original tree.node
A node is called the deepest if it has the largest depth possible among any node in the entire tree.code
The subtree of a node is tree consisting of that node, plus the set of all descendants of that node.blog
Note: This question is the same as 1123: https://leetcode.com/problems/lowest-common-ancestor-of-deepest-leaves/递归
Example 1:leetcode
Input: root = [3,5,1,6,2,0,8,null,null,7,4] Output: [2,7,4] Explanation: We return the node with value 2, colored in yellow in the diagram. The nodes coloured in blue are the deepest nodes of the tree. Notice that nodes 5, 3 and 2 contain the deepest nodes in the tree but node 2 is the smallest subtree among them, so we return it.
Example 2:get
Input: root = [1] Output: [1] Explanation: The root is the deepest node in the tree.
Example 3:it
Input: root = [0,1,3,null,2] Output: [2] Explanation: The deepest node in the tree is 2, the valid subtrees are the subtrees of nodes 2, 1 and 0 but the subtree of node 2 is the smallest.
Constraints:io
[1, 500]
.0 <= Node.val <= 500
在二叉树中找到一个子树,使它包含全部深度最大的结点。class
先一次DFS找到全部最深的结点,而后用找公共祖先的方法递归处理:在当前结点的左子树和右子树中找包含最深结点的子树leftTree和rightTree,若是都存在,说明当前结点是一个公共祖先,返回该结点;若是只有leftTree存在,返回leftTree;若是只有rightTree存在,返回rightTree;若是都不存在,说明以当前结点为根结点的子树不在范围内,返回null。
class Solution { private Map<TreeNode, Integer> depth = new HashMap<>(); private int maxDepth = -1; public TreeNode subtreeWithAllDeepest(TreeNode root) { findDepth(root, 1); return findAncestor(root); } private void findDepth(TreeNode node, int level) { if (node == null) { return; } maxDepth = Math.max(maxDepth, level); depth.put(node, level); findDepth(node.left, level + 1); findDepth(node.right, level + 1); } private TreeNode findAncestor(TreeNode node) { if (node == null || depth.get(node) == maxDepth) { return node; } TreeNode leftAncestor = findAncestor(node.left); TreeNode rightAncestor = findAncestor(node.right); if (leftAncestor != null && rightAncestor != null) { return node; } else if (leftAncestor != null) { return leftAncestor; } else if (rightAncestor != null) { return rightAncestor; } else { return null; } } }