JavaShuo
栏目
标签
The Expressive Power of Neural Networks: A View from the Width
时间 2021-01-11
标签
neural networks
繁體版
原文
原文链接
文章目录 概 主要内容 定理1 定理2 定理3 定理4 定理1的证明 Lu Z, Pu H, Wang F, et al. The expressive power of neural networks: a view from the width[C]. neural information processing systems, 2017: 6232-6240. @article{lu2017
>>阅读原文<<
相关文章
1.
The Unreasonable Effectiveness of Recurrent Neural Networks
2.
On the Number of Linear Regions of Deep Neural Networks
3.
Exploring the teaching of deep learning in neural networks
4.
the english of the simple view
5.
Xavier——Understanding the difficulty of training deep feedforward neural networks
6.
[paper]Towards Evaluating the Robustness of Neural Networks(C&W)
7.
Why LSTMs Stop Your Gradients From Vanishing: A View from the Backwards Pass
8.
On the difficulty of training Recurrent Neural Networks
9.
The Rise of Meta Learning
10.
Applications of Graph Neural Networks
更多相关文章...
•
ASP.NET Width 属性
-
ASP.NET 教程
•
SQLite 视图(View)
-
SQLite教程
•
RxJava操作符(一)Creating Observables
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
相关标签/搜索
mysql..the
the&nbs
mysql....the
The One!
5.the
mysql...the
networks
width
expressive
neural
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
部署Hadoop(3.3.0)伪分布式集群
2.
从0开始搭建hadoop伪分布式集群(三:Zookeeper)
3.
centos7 vmware 搭建集群
4.
jsp的page指令
5.
Sql Server 2008R2 安装教程
6.
python:模块导入import问题总结
7.
Java控制修饰符,子类与父类,组合重载覆盖等问题
8.
(实测)Discuz修改论坛最后发表的帖子的链接为静态地址
9.
java参数传递时,究竟传递的是什么
10.
Linux---文件查看(4)
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
The Unreasonable Effectiveness of Recurrent Neural Networks
2.
On the Number of Linear Regions of Deep Neural Networks
3.
Exploring the teaching of deep learning in neural networks
4.
the english of the simple view
5.
Xavier——Understanding the difficulty of training deep feedforward neural networks
6.
[paper]Towards Evaluating the Robustness of Neural Networks(C&W)
7.
Why LSTMs Stop Your Gradients From Vanishing: A View from the Backwards Pass
8.
On the difficulty of training Recurrent Neural Networks
9.
The Rise of Meta Learning
10.
Applications of Graph Neural Networks
>>更多相关文章<<