相关数据见(github)html
import pandas as pd
path2 = "./data/Euro2012.csv" # Euro2012.csv
euro12 = pd.read_csv(path2) euro12.tail()
输出:python
Goals
这一列euro12.Goals # euro12['Goals']
输出:git
euro12.shape[0]
输出:github
16
euro12.info()
输出:ide
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16 entries, 0 to 15
Data columns (total 35 columns):
Team 16 non-null object
Goals 16 non-null int64
Shots on target 16 non-null int64
Shots off target 16 non-null int64
Shooting Accuracy 16 non-null object
% Goals-to-shots 16 non-null object
Total shots (inc. Blocked) 16 non-null int64
Hit Woodwork 16 non-null int64
Penalty goals 16 non-null int64
Penalties not scored 16 non-null int64
Headed goals 16 non-null int64
Passes 16 non-null int64
Passes completed 16 non-null int64
Passing Accuracy 16 non-null object
Touches 16 non-null int64
Crosses 16 non-null int64
Dribbles 16 non-null int64
Corners Taken 16 non-null int64
Tackles 16 non-null int64
Clearances 16 non-null int64
Interceptions 16 non-null int64
Clearances off line 15 non-null float64
Clean Sheets 16 non-null int64
Blocks 16 non-null int64
Goals conceded 16 non-null int64
Saves made 16 non-null int64
Saves-to-shots ratio 16 non-null object
Fouls Won 16 non-null int64
Fouls Conceded 16 non-null int64
Offsides 16 non-null int64
Yellow Cards 16 non-null int64
Red Cards 16 non-null int64
Subs on 16 non-null int64
Subs off 16 non-null int64
Players Used 16 non-null int64
dtypes: float64(1), int64(29), object(5)
memory usage: 4.5+ KB
discipline = euro12[['Team', 'Yellow Cards', 'Red Cards']] discipline
输出:ui
discipline.sort_values(['Red Cards', 'Yellow Cards'], ascending = False)
输出:spa
round(discipline['Yellow Cards'].mean())
输出:3d
7.0
euro12[euro12.Goals > 6]
输出:code
# euro12[euro12.Team.str.startswith('G')]
euro12[euro12.Team.str.endswith('e')] # 以字母e结束的球队
输出:htm
euro12.iloc[: , 0:7]
输出:
euro12.iloc[: , :-3]
输出:
euro12.loc[euro12.Team.isin(['England', 'Italy', 'Russia']), ['Team','Shooting Accuracy']]
输出:
一、http://pandas.pydata.org/pandas-docs/stable/cookbook.html#cookbook
二、https://www.analyticsvidhya.com/blog/2016/01/12-pandas-techniques-python-data-manipulation/