正则化方法 (一)

1. 正则化的目的:防止过拟合! 2. 正则化的本质:约束(限制)要优化的参数。 关于第1点,过拟合指的是给定一堆数据,这堆数据带有噪声,利用模型去拟合这堆数据,可能会把噪声数据也给拟合了,这点很致命,一方面会造成模型比较复杂(想想看,本来一次函数能够拟合的数据,现在由于数据带有噪声,导致要用五次函数来拟合,多复杂!),另一方面,模型的泛化性能太差了(本来是一次函数生成的数据,结果由于噪声的干扰,
相关文章
相关标签/搜索