归一化在梯度下降中的作用

    在梯度下降中多数时候原始数据若没经过特征处理,数据的各个维度是存在着量级的差别,假如线性函数Ax+By+b=C,X维度数量级是十,Y的数量级是万,那么求出的A就比B大,那么在用梯度下降求解最优解过程中,对A求偏导每次变化是和X成线性的(结果只和x相关),对B求偏导是和B成线性的(结果只与y相关),这样就造成两个维度下降速度不一致的问题,在图像上面显示就是A每次走的step很小,B的step
相关文章
相关标签/搜索