题意:c++
给一个环,环上有n+m个点。给n个点染成B,m个点染成W。求全部染色状况的每段长度乘积之和。数组
题解:ide
染成B的段数和染成W的段数是同样的(由于是环)。url
第一段是能够移动的,例如BBWWW移动为BWWWB。spa
因此处理两个方程:b[i][j]表明把j分红i段的乘积和且第一段不能移动;f[i][j]表明把j分红i段的乘积和且第一段能够移动。.net
那么枚举分红的段数,对于当前枚举分红i段,答案就为:f[i][n]*b[i][m]+f[i][m]*b[i][n].code
问题是方程怎么转移了。blog
对于b[i][j],枚举一个新加的数(1~j-i+1),即b[i][j] = 1*b[i-1][j-1]+2*b[i-1][j-2]+...+(j-i+1)*b[i-1][i-1].get
对于f[i][j],肯定他的第一个数是什么,而后枚举一个新加的数,即f[1][i] = i*i(肯定第一个数);f[i][j] = 1*f[i-1][j-1]+2*f[i-1][j-2]+...+(j-i+1)*f[i-1][i-1].it
HDU上建2个数组会MLE,因此只能在camp上过2个数组的。camp题目地址:https://www.icpc.camp/contests/6CP5W4knRaIRgU


#include <bits/stdc++.h> using namespace std; const int N = 5001; const int mod = 1e9+7; typedef long long ll; int n, m; ll f[N][N], b[N][N]; ll ans; int main() { b[0][0] = 1; for(int i = 1; i <= 5000; i++) { ll sum = 0, res = 0; for(int j = i; j <= 5000; j++) { res = (res+b[i-1][j-1])%mod; sum = (sum+res)%mod; b[i][j] = sum; } } for(int i = 1; i <= 5000; i++) f[1][i] = (i*i)%mod; for(int i = 2; i <= 5000; i++) { ll sum = 0, res = 0; for(int j = i; j <= 5000; j++) { res = (res+f[i-1][j-1])%mod; sum = (sum+res)%mod; f[i][j] = sum; } } while(~scanf("%d%d", &n, &m)) { ans = 0; int up = min(m, n); for(int i = 1; i <= up; i++) { ans = (ans+f[i][n]*b[i][m]+f[i][m]*b[i][n])%mod; } printf("%lld\n", ans); } }