百度的Hadoop分布式大数据系统图解:4000节点集群

在 NoSQL 方面,以前了解到百度对 Hadoop 和 hypertable 都有研究,并且 hypertable 方面更是做为其主要赞助商之一,但以前和百度的一些朋友了解到百度内部对 hypertable 却是使用很少,相反在 Hadoop 方面却是有比较大的应用实例。下面一篇文章描述了百度内部4000个结点的 Hadoop 集群的一些技术细节。html

百度的高性能计算系统(主要是后端数据训练和计算)目前有4000节点,超过10个的集群,最大的集群规模在1000个节点以上。每一个节点由8核CPU以及16G内存以及12TB硬盘组成,天天的数据生成量在3PB以上。规划当中的架构将有超过1万个节点,天天的数据生成量在10PB以上。算法



底层的计算资源管理层采用了Agent调度不一样类型的计算分别给MPI结构的算法和Map-Reduce和DAG算法应用等。而经过调度的分配,能够让HPC高性能计算集群和大规模分布式集群各得其所的计算相应数据。
sql

百度经过HCE对streaming做业的排序,压缩,解压缩,内存控制进行了优化并提供了C++版的MapReduce接口。apache

百度HCE语言的有关内容,HCE是基于C++的Hadoop环境,是一个全功能C++环境,能够避开Java语言对于释放内存和资源申请的弊端,并在调用数据时绕开Java语言的全部关节,极大的提高算法效率。后端

百度的调度器是在capacity-scheduler的基础上根据自身业务改进的。架构

百度计划对shuffle流程进行大幅改造nosql

转自:http://www.cnblogs.com/chinacloud/archive/2010/11/08/1871592.html分布式

Hadoop的知名应用项目请参考:oop

http://wiki.apache.org/hadoop/PoweredBy性能

相关文章
相关标签/搜索