论文阅读笔记《DPGN: Distribution Propagation Graph Network for Few-shot Learning》

核心思想   本文提出一种基于图神经网络的小样本学习算法(DPGN)。先前基于图神经网络的小样本算法通常将每个样本当作一个结点,然后通过结点之间的关系,来推导出未知结点的类别。本文不仅关心样本与样本之间的关系,而且关注样本的分布之间的关系。本文提出了一个双图神经网络模型,一个图用于描述样本(PG),一个图用于描述分布(DG)。PG通过聚合每个样本和其他所有样本之间的关系来得到DG,DG又利用每对样
相关文章
相关标签/搜索