C++中的虚函数的做用主要是实现了多态的机制。关于多态,简而言之就是用父类型别的指针指向其子类的实例,而后经过父类的指针调用实际子类的成员函数。这种技术可让父类的指针有“多种形态”,这是一种泛型技术。所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。好比:模板技术,RTTI技术,虚函数技术,要么是试图作到在编译时决议,要么试图作到运行时决议。ios
关于虚函数的使用方法,我在这里不作过多的阐述。你们能够看看相关的C++的书籍。在这篇文章中,我只想从虚函数的实现机制上面为你们 一个清晰的剖析。程序员
固然,相同的文章在网上也出现过一些了,但我总感受这些文章不是很容易阅读,大段大段的代码,没有图片,没有详细的说明,没有比较,没有触类旁通。不利于学习和阅读,因此这是我想写下这篇文章的缘由。也但愿你们多给我提意见。算法
言归正传,让咱们一块儿进入虚函数的世界。编程
对C++ 了解的人都应该知道虚函数(Virtual Function)是经过一张虚函数表(Virtual Table)来实现的。简称为V-Table。在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,因此,当咱们用父类的指针来操做一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图同样,指明了实际所应该调用的函数。安全
这里咱们着重看一下这张虚函数表。C++的编译器应该是保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证取到虚函数表的有最高的性能——若是有多层继承或是多重继承的状况下)。 这意味着咱们经过对象实例的地址获得这张虚函数表,而后就能够遍历其中函数指针,并调用相应的函数。网络
听我扯了那么多,我能够感受出来你如今可能比之前更加晕头转向了。 不要紧,下面就是实际的例子,相信聪明的你一看就明白了。编程语言
假设咱们有这样的一个类:分布式
class Base {函数
public:性能
virtual void f() { cout << "Base::f" << endl; }
virtual void g() { cout << "Base::g" << endl; }
virtual void h() { cout << "Base::h" << endl; }
};
按照上面的说法,咱们能够经过Base的实例来获得虚函数表。 下面是实际例程:
typedef void(*Fun)(void);
Base b;
Fun pFun = NULL;
cout << "虚函数表地址:" << (int*)(&b) << endl;
cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl;
// Invoke the first virtual function
pFun = (Fun)*((int*)*(int*)(&b));
pFun();
实际运行经果以下:(Windows XP+VS2003, Linux 2.6.22 + GCC 4.1.3)
虚函数表地址:0012FED4
虚函数表 — 第一个函数地址:0044F148
Base::f
经过这个示例,咱们能够看到,咱们能够经过强行把&b转成int *,取得虚函数表的地址,而后,再次取址就能够获得第一个虚函数的地址了,也就是Base::f(),这在上面的程序中获得了验证(把int* 强制转成了函数指针)。经过这个示例,咱们就能够知道若是要调用Base::g()和Base::h(),其代码以下:
(Fun)*((int*)*(int*)(&b)+0); // Base::f()
(Fun)*((int*)*(int*)(&b)+1); // Base::g()
(Fun)*((int*)*(int*)(&b)+2); // Base::h()
这个时候你应该懂了吧。什么?仍是有点晕。也是,这样的代码看着太乱了。没问题,让我画个图解释一下。以下所示:
注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“/0”同样,其标志了虚函数表的结束。这个结束标志的值在不一样的编译器下是不一样的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是若是1,表示还有下一个虚函数表,若是值是0,表示是最后一个虚函数表。
下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无心义的。我之因此要讲述没有覆盖的状况,主要目的是为了给一个对比。在比较之下,咱们能够更加清楚地知道其内部的具体实现。
下面,再让咱们来看看继承时的虚函数表是什么样的。假设有以下所示的一个继承关系:
请注意,在这个继承关系中,子类没有重载任何父类的函数。那么,在派生类的实例中,其虚函数表以下所示:
对于实例:Derive d; 的虚函数表以下:
咱们能够看到下面几点:
1)虚函数按照其声明顺序放于表中。
2)父类的虚函数在子类的虚函数前面。
我相信聪明的你必定能够参考前面的那个程序,来编写一段程序来验证。
覆盖父类的虚函数是很显然的事情,否则,虚函数就变得毫无心义。下面,咱们来看一下,若是子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,咱们有下面这样的一个继承关系。
为了让你们看到被继承事后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:
咱们从表中能够看到下面几点,
1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。
2)没有被覆盖的函数依旧。
这样,咱们就能够看到对于下面这样的程序,
Base *b = new Derive();
b->f();
由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,因而在实际调用发生时,是Derive::f()被调用了。这就实现了多态。
下面,再让咱们来看看多重继承中的状况,假设有下面这样一个类的继承关系。注意:子类并无覆盖父类的函数。
对于子类实例中的虚函数表,是下面这个样子:
咱们能够看到:
1) 每一个父类都有本身的虚表。
2) 子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)
这样作就是为了解决不一样的父类类型的指针指向同一个子类实例,而可以调用到实际的函数。
下面咱们再来看看,若是发生虚函数覆盖的状况。
下图中,咱们在子类中覆盖了父类的f()函数。
下面是对于子类实例中的虚函数表的图:
咱们能够看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,咱们就能够任一静态类型的父类来指向子类,并调用子类的f()了。如:
Derive d;
Base1 *b1 = &d;
Base2 *b2 = &d;
Base3 *b3 = &d;
b1->f(); //Derive::f()
b2->f(); //Derive::f()
b3->f(); //Derive::f()
b1->g(); //Base1::g()
b2->g(); //Base2::g()
b3->g(); //Base3::g()
每次写C++的文章,总免不了要批判一下C++。这篇文章也不例外。经过上面的讲述,相信咱们对虚函数表有一个比较细致的了解了。水可载舟,亦可覆舟。下面,让咱们来看看咱们能够用虚函数表来干点什么坏事吧。
1、经过父类型的指针访问子类本身的虚函数
咱们知道,子类没有重载父类的虚函数是一件毫无心义的事情。由于多态也是要基于函数重载的。虽然在上面的图中咱们能够看到Base1的虚表中有Derive的虚函数,但咱们根本不可能使用下面的语句来调用子类的自有虚函数:
Base1 *b1 = new Derive();
b1->f1(); //编译出错
任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法,因此,这样的程序根本没法编译经过。但在运行时,咱们能够经过指针的方式访问虚函数表来达到违反C++语义的行为。(关于这方面的尝试,经过阅读后面附录的代码,相信你能够作到这一点)
2、访问non-public的虚函数
另外,若是父类的虚函数是private或是protected的,但这些非public的虚函数一样会存在于虚函数表中,因此,咱们一样可使用访问虚函数表的方式来访问这些non-public的虚函数,这是很容易作到的。
如:
class Base {
private:
virtual void f() { cout << "Base::f" << endl; }
};
class Derive : public Base{
};
typedef void(*Fun)(void);
void main() {
Derive d;
Fun pFun = (Fun)*((int*)*(int*)(&d)+0);
pFun();
}
C++这门语言是一门Magic的语言,对于程序员来讲,咱们彷佛永远摸不清楚这门语言背着咱们在干了什么。须要熟悉这门语言,咱们就必须要了解C++里面的那些东西,须要去了解C++中那些危险的东西。否则,这是一种搬起石头砸本身脚的编程语言。
在文章束以前仍是介绍一下本身吧。我从事软件研发有十个年头了,目前是软件开发技术主管,技术方面,主攻Unix/C/C++,比较喜欢网络上的技术,好比分布式计算,网格计算,P2P,Ajax等一切和互联网相关的东西。管理方面比较擅长于团队建设,技术趋势分析,项目管理。欢迎你们和我交流,个人MSN和Email是:haoel@hotmail.com
咱们能够在VC的IDE环境中的Debug状态下展开类的实例就能够看到虚函数表了(并非很完整的)
下面是一个关于多重继承的虚函数表访问的例程:
#include <iostream>
using namespace std;
class Base1 {
public:
virtual void f() { cout << "Base1::f" << endl; }
virtual void g() { cout << "Base1::g" << endl; }
virtual void h() { cout << "Base1::h" << endl; }
};
class Base2 {
public:
virtual void f() { cout << "Base2::f" << endl; }
virtual void g() { cout << "Base2::g" << endl; }
virtual void h() { cout << "Base2::h" << endl; }
};
class Base3 {
public:
virtual void f() { cout << "Base3::f" << endl; }
virtual void g() { cout << "Base3::g" << endl; }
virtual void h() { cout << "Base3::h" << endl; }
};
class Derive : public Base1, public Base2, public Base3 {
public:
virtual void f() { cout << "Derive::f" << endl; }
virtual void g1() { cout << "Derive::g1" << endl; }
};
typedef void(*Fun)(void);
int main()
{
Fun pFun = NULL;
Derive d;
int** pVtab = (int**)&d;
//Base1's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+0);
pFun = (Fun)pVtab[0][0];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+1);
pFun = (Fun)pVtab[0][1];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+2);
pFun = (Fun)pVtab[0][2];
pFun();
//Derive's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+3);
pFun = (Fun)pVtab[0][3];
pFun();
//The tail of the vtable
pFun = (Fun)pVtab[0][4];
cout<<pFun<<endl;
//Base2's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
pFun = (Fun)pVtab[1][0];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
pFun = (Fun)pVtab[1][1];
pFun();
pFun = (Fun)pVtab[1][2];
pFun();
//The tail of the vtable
pFun = (Fun)pVtab[1][3];
cout<<pFun<<endl;
//Base3's vtable
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);
pFun = (Fun)pVtab[2][0];
pFun();
//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);
pFun = (Fun)pVtab[2][1];
pFun();
pFun = (Fun)pVtab[2][2];
pFun();
//The tail of the vtable
pFun = (Fun)pVtab[2][3];
cout<<pFun<<endl;
return 0;
}
(转载时请注明做者和出处。未经许可,请勿用于商业用途)
更多文章请访问个人Blog: http://blog.csdn.net/haoel