Canny函数利用Canny算法来进行图像的边缘检测。算法
须要注意的是,这个函数阈值1和阈值2二者的小者用于边缘链接,而大者用来控制强边缘的初始段,推荐的高低阈值比在2:1到3:1之间函数
dem:1:字体
demo2:ui
//-----------------------------------【头文件包含部分】--------------------------------------- // 描述:包含程序所依赖的头文件 //---------------------------------------------------------------------------------------------- #include <opencv2/opencv.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> //-----------------------------------【命名空间声明部分】--------------------------------------- // 描述:包含程序所使用的命名空间 //----------------------------------------------------------------------------------------------- using namespace cv; //-----------------------------------【main( )函数】-------------------------------------------- // 描述:控制台应用程序的入口函数,咱们的程序从这里开始 //----------------------------------------------------------------------------------------------- int main( ) { //载入原始图 Mat src = imread("1.jpg"); //工程目录下应该有一张名为1.jpg的素材图 Mat src1=src.clone(); //显示原始图 imshow("【原始图】Canny边缘检测", src); //---------------------------------------------------------------------------------- // 1、最简单的canny用法,拿到原图后直接用。 //---------------------------------------------------------------------------------- Canny( src, src, 150, 100,3 ); imshow("【效果图】Canny边缘检测", src); //---------------------------------------------------------------------------------- // 2、高阶的canny用法,转成灰度图,降噪,用canny,最后将获得的边缘做为掩码,拷贝原图到效果图上,获得彩色的边缘图 //---------------------------------------------------------------------------------- Mat dst,edge,gray; // 【1】建立与src同类型和大小的矩阵(dst) dst.create( src1.size(), src1.type() ); // 【2】将原图像转换为灰度图像 cvtColor( src1, gray, CV_BGR2GRAY ); // 【3】先用使用 3x3内核来降噪 blur( gray, edge, Size(3,3) ); // 【4】运行Canny算子 Canny( edge, edge, 3, 9,3 ); //【5】将g_dstImage内的全部元素设置为0 dst = Scalar::all(0); //【6】使用Canny算子输出的边缘图g_cannyDetectedEdges做为掩码,来将原图g_srcImage拷到目标图g_dstImage中 src1.copyTo( dst, edge); //【7】显示效果图 imshow("【效果图】Canny边缘检测2", dst); waitKey(0); return 0; }
Sobel函数使用扩展的 Sobel 算子,来计算一阶、二阶、三阶或混合图像差分spa
C++: void Sobel ( InputArray src,//输入图 OutputArray dst,//输出图 int ddepth,//输出图像的深度 int dx, int dy, int ksize=3, double scale=1, double delta=0, int borderType=BORDER_DEFAULT );
- 第一个参数,InputArray 类型的src,为输入图像,填Mat类型便可。
- 第二个参数,OutputArray类型的dst,即目标图像,函数的输出参数,须要和源图片有同样的尺寸和类型。
- 第三个参数,int类型的ddepth,输出图像的深度,支持以下src.depth()和ddepth的组合:
- 若src.depth() = CV_8U, 取ddepth =-1/CV_16S/CV_32F/CV_64F
- 若src.depth() = CV_16U/CV_16S, 取ddepth =-1/CV_32F/CV_64F
- 若src.depth() = CV_32F, 取ddepth =-1/CV_32F/CV_64F
- 若src.depth() = CV_64F, 取ddepth = -1/CV_64F
- 第四个参数,int类型dx,x 方向上的差分阶数。
- 第五个参数,int类型dy,y方向上的差分阶数。
- 第六个参数,int类型ksize,有默认值3,表示Sobel核的大小;必须取1,3,5或7。
- 第七个参数,double类型的scale,计算导数值时可选的缩放因子,默认值是1,表示默认状况下是没有应用缩放的。咱们能够在文档中查阅getDerivKernels的相关介绍,来获得这个参数的更多信息。
- 第八个参数,double类型的delta,表示在结果存入目标图(第二个参数dst)以前可选的delta值,有默认值0。
- 第九个参数, int类型的borderType,咱们的老朋友了(万年是最后一个参数),边界模式,默认值为BORDER_DEFAULT。这个参数能够在官方文档中borderInterpolate处获得更详细的信息。
通常状况下,都是用ksize x ksize内核来计算导数的。然而,有一种特殊状况——当ksize为1时,每每会使用3 x 1或者1 x 3的内核。且这种状况下,并无进行高斯平滑操做。.net
demo1:code
调用Sobel函数的实例代码以下。这里只是教你们如何使用Sobel函数,就没有先用一句cvtColor将原图;转化为灰度图,而是直接用彩色图操做。对象
//-----------------------------------【头文件包含部分】--------------------------------------- // 描述:包含程序所依赖的头文件 //---------------------------------------------------------------------------------------------- #include <opencv2/opencv.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> //-----------------------------------【命名空间声明部分】--------------------------------------- // 描述:包含程序所使用的命名空间 //----------------------------------------------------------------------------------------------- using namespace cv; //-----------------------------------【main( )函数】-------------------------------------------- // 描述:控制台应用程序的入口函数,咱们的程序从这里开始 //----------------------------------------------------------------------------------------------- int main( ) { //【0】建立 grad_x 和 grad_y 矩阵 Mat grad_x, grad_y; Mat abs_grad_x, abs_grad_y,dst; //【1】载入原始图 Mat src = imread("1.jpg"); //工程目录下应该有一张名为1.jpg的素材图 //【2】显示原始图 imshow("【原始图】sobel边缘检测", src); //【3】求 X方向梯度 Sobel( src, grad_x, CV_16S, 1, 0, 3, 1, 1, BORDER_DEFAULT ); convertScaleAbs( grad_x, abs_grad_x ); imshow("【效果图】 X方向Sobel", abs_grad_x); //【4】求Y方向梯度 Sobel( src, grad_y, CV_16S, 0, 1, 3, 1, 1, BORDER_DEFAULT ); convertScaleAbs( grad_y, abs_grad_y ); imshow("【效果图】Y方向Sobel", abs_grad_y); //【5】合并梯度(近似) addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, dst ); imshow("【效果图】总体方向Sobel", dst); waitKey(0); return 0; }
C++: void Laplacian(InputArray src,OutputArray dst, int ddepth, int ksize=1, double scale=1, double delta=0, intborderType=BORDER_DEFAULT );
Laplacian( )函数其实主要是利用sobel算子的运算。它经过加上sobel算子运算出的图像x方向和y方向上的导数,来获得咱们载入图像的拉普拉斯变换结果。blog
demo1:教程
//-----------------------------------【头文件包含部分】--------------------------------------- // 描述:包含程序所依赖的头文件 //---------------------------------------------------------------------------------------------- #include <opencv2/opencv.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> //-----------------------------------【命名空间声明部分】--------------------------------------- // 描述:包含程序所使用的命名空间 //----------------------------------------------------------------------------------------------- using namespace cv; //-----------------------------------【main( )函数】-------------------------------------------- // 描述:控制台应用程序的入口函数,咱们的程序从这里开始 //----------------------------------------------------------------------------------------------- int main( ) { //【0】变量的定义 Mat src,src_gray,dst, abs_dst; //【1】载入原始图 src = imread("1.jpg"); //工程目录下应该有一张名为1.jpg的素材图 //【2】显示原始图 imshow("【原始图】图像Laplace变换", src); //【3】使用高斯滤波消除噪声 GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT ); //【4】转换为灰度图 cvtColor( src, src_gray, CV_RGB2GRAY ); //【5】使用Laplace函数 Laplacian( src_gray, dst, CV_16S, 3, 1, 0, BORDER_DEFAULT ); //【6】计算绝对值,并将结果转换成8位 convertScaleAbs( dst, abs_dst ); //【7】显示效果图 imshow( "【效果图】图像Laplace变换", abs_dst ); waitKey(0); return 0; }
4.综合代码汇总
//-----------------------------------【程序说明】---------------------------------------------- // 程序名称::《【OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑合辑》 博文配套源码 // 开发所用IDE版本:Visual Studio 2010 // <span style="white-space:pre"> </span>开发所用OpenCV版本: 2.4.9 // 2014年5月11日 Create by 浅墨 // 浅墨的微博:@浅墨_毛星云 http://weibo.com/1723155442/profile?topnav=1&wvr=5&user=1 // 浅墨的知乎:http://www.zhihu.com/people/mao-xing-yun // 浅墨的豆瓣:http://www.douban.com/people/53426472/ //---------------------------------------------------------------------------------------------- //-----------------------------------【头文件包含部分】--------------------------------------- // 描述:包含程序所依赖的头文件 //---------------------------------------------------------------------------------------------- #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> //-----------------------------------【命名空间声明部分】-------------------------------------- // 描述:包含程序所使用的命名空间 //----------------------------------------------------------------------------------------------- using namespace cv; //-----------------------------------【全局变量声明部分】-------------------------------------- // 描述:全局变量声明 //----------------------------------------------------------------------------------------------- //原图,原图的灰度版,目标图 Mat g_srcImage, g_srcGrayImage,g_dstImage; //Canny边缘检测相关变量 Mat g_cannyDetectedEdges; int g_cannyLowThreshold=1;//TrackBar位置参数 //Sobel边缘检测相关变量 Mat g_sobelGradient_X, g_sobelGradient_Y; Mat g_sobelAbsGradient_X, g_sobelAbsGradient_Y; int g_sobelKernelSize=1;//TrackBar位置参数 //Scharr滤波器相关变量 Mat g_scharrGradient_X, g_scharrGradient_Y; Mat g_scharrAbsGradient_X, g_scharrAbsGradient_Y; //-----------------------------------【全局函数声明部分】-------------------------------------- // 描述:全局函数声明 //----------------------------------------------------------------------------------------------- static void ShowHelpText( ); static void on_Canny(int, void*);//Canny边缘检测窗口滚动条的回调函数 static void on_Sobel(int, void*);//Sobel边缘检测窗口滚动条的回调函数 void Scharr( );//封装了Scharr边缘检测相关代码的函数 //-----------------------------------【main( )函数】-------------------------------------------- // 描述:控制台应用程序的入口函数,咱们的程序从这里开始 //----------------------------------------------------------------------------------------------- int main( int argc, char** argv ) { //改变console字体颜色 system("color 2F"); //显示欢迎语 ShowHelpText(); //载入原图 g_srcImage = imread("1.jpg"); if( !g_srcImage.data ) { printf("Oh,no,读取srcImage错误~! \n"); return false; } //显示原始图 namedWindow("【原始图】"); imshow("【原始图】", g_srcImage); // 建立与src同类型和大小的矩阵(dst) g_dstImage.create( g_srcImage.size(), g_srcImage.type() ); // 将原图像转换为灰度图像 cvtColor( g_srcImage, g_srcGrayImage, CV_BGR2GRAY ); // 建立显示窗口 namedWindow( "【效果图】Canny边缘检测", CV_WINDOW_AUTOSIZE ); namedWindow( "【效果图】Sobel边缘检测", CV_WINDOW_AUTOSIZE ); // 建立trackbar createTrackbar( "参数值:", "【效果图】Canny边缘检测", &g_cannyLowThreshold, 120, on_Canny ); createTrackbar( "参数值:", "【效果图】Sobel边缘检测", &g_sobelKernelSize, 3, on_Sobel ); // 调用回调函数 on_Canny(0, 0); on_Sobel(0, 0); //调用封装了Scharr边缘检测代码的函数 Scharr( ); //轮询获取按键信息,若按下Q,程序退出 while((char(waitKey(1)) != 'q')) {} return 0; } //-----------------------------------【ShowHelpText( )函数】---------------------------------- // 描述:输出一些帮助信息 //---------------------------------------------------------------------------------------------- static void ShowHelpText() { //输出一些帮助信息 printf( "\n\n\t嗯。运行成功,请调整滚动条观察图像效果~\n\n" "\t按下“q”键时,程序退出~!\n" "\n\n\t\t\t\t by浅墨" ); } //-----------------------------------【on_Canny( )函数】---------------------------------- // 描述:Canny边缘检测窗口滚动条的回调函数 //----------------------------------------------------------------------------------------------- void on_Canny(int, void*) { // 先使用 3x3内核来降噪 blur( g_srcGrayImage, g_cannyDetectedEdges, Size(3,3) ); // 运行咱们的Canny算子 Canny( g_cannyDetectedEdges, g_cannyDetectedEdges, g_cannyLowThreshold, g_cannyLowThreshold*3, 3 ); //先将g_dstImage内的全部元素设置为0 g_dstImage = Scalar::all(0); //使用Canny算子输出的边缘图g_cannyDetectedEdges做为掩码,来将原图g_srcImage拷到目标图g_dstImage中 g_srcImage.copyTo( g_dstImage, g_cannyDetectedEdges); //显示效果图 imshow( "【效果图】Canny边缘检测", g_dstImage ); } //-----------------------------------【on_Sobel( )函数】---------------------------------- // 描述:Sobel边缘检测窗口滚动条的回调函数 //----------------------------------------------------------------------------------------- void on_Sobel(int, void*) { // 求 X方向梯度 Sobel( g_srcImage, g_sobelGradient_X, CV_16S, 1, 0, (2*g_sobelKernelSize+1), 1, 1, BORDER_DEFAULT ); convertScaleAbs( g_sobelGradient_X, g_sobelAbsGradient_X );//计算绝对值,并将结果转换成8位 // 求Y方向梯度 Sobel( g_srcImage, g_sobelGradient_Y, CV_16S, 0, 1, (2*g_sobelKernelSize+1), 1, 1, BORDER_DEFAULT ); convertScaleAbs( g_sobelGradient_Y, g_sobelAbsGradient_Y );//计算绝对值,并将结果转换成8位 // 合并梯度 addWeighted( g_sobelAbsGradient_X, 0.5, g_sobelAbsGradient_Y, 0.5, 0, g_dstImage ); //显示效果图 imshow("【效果图】Sobel边缘检测", g_dstImage); } //-----------------------------------【Scharr( )函数】---------------------------------- // 描述:封装了Scharr边缘检测相关代码的函数 //----------------------------------------------------------------------------------------- void Scharr( ) { // 求 X方向梯度 Scharr( g_srcImage, g_scharrGradient_X, CV_16S, 1, 0, 1, 0, BORDER_DEFAULT ); convertScaleAbs( g_scharrGradient_X, g_scharrAbsGradient_X );//计算绝对值,并将结果转换成8位 // 求Y方向梯度 Scharr( g_srcImage, g_scharrGradient_Y, CV_16S, 0, 1, 1, 0, BORDER_DEFAULT ); convertScaleAbs( g_scharrGradient_Y, g_scharrAbsGradient_Y );//计算绝对值,并将结果转换成8位 // 合并梯度 addWeighted( g_scharrAbsGradient_X, 0.5, g_scharrAbsGradient_Y, 0.5, 0, g_dstImage ); //显示效果图 imshow("【效果图】Scharr滤波器", g_dstImage); }
参考:https://blog.csdn.net/poem_qianmo/article/details/25560901