Spark 1.4.1 Standalone 模式部署安装配置

各节点执行以下操做(或在一个节点上操做完后 scp 到其它节点):
java

一、 解压spark安装程序到程序目录/bigdata/soft/spark-1.4.1,约定此目录为$SPARK_HOMEmysql

        tar –zxvf spark-1.4-bin-hadoop2.6.tar.gzsql

二、 配置spark,(scala 的安装这里就不讲了)shell

  • 配置文件vi $SPARK_HOME /conf/spark-env.shapache

###添加以下内容:api

export JAVA_HOME=/bigdata/soft/jdk1.7.0_79app

export SCALA_HOME=/bigdata/soft/scala-2.10.5oop

export HADOOP_CONF_DIR=/bigdata/soft/hadoop-2.6.0/etc/hadoop测试

export SPARK_MASTER_IP=cloud-001spa

#export SPARK_MASTER_PORT=7077

export SPARK_WORKER_MEMORY=1g

export SPARK_WORKER_CORES=1

export SPARK_WORKER_INSTANCES=1

export SPARK_CLASSPATH=$SPARK_CLASSPATH:/bigdata/soft/spark-1.4.1/lib/mysql-connector-java-5.1.31.jar

  • 配置vi $SPARK_HOME /conf/slaves

##根据集群节点设置slave节点

cloud-002

cloud-003

  • 配置vi $SPARK_HOME /conf/spark-defaults.conf

 ##先在hdfs上新建spark的日志目录

$Hadoop_HOME/bin/hadoop fs –mkdir /applogs

$Hadoop_HOME/bin/hadoop fs –mkdir /applogs/spark

 

##复制一个spark的配置文件

cp spark-defaults.conf.template spark-defaults.conf

##解注掉其中两行

spark.master                    spark://cloud-001:7077

spark.eventLog.enabled          true

spark.eventLog.dir               hdfs://cloud-001:8020/applogs/spark

 

  • 配置vi $SPARK_HOME /conf/hive-site.xml

###内容基本与hive的配置一致,详见以下:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

  <property>

    <name>javax.jdo.option.ConnectionURL</name>

    <value>jdbc:mysql://localhost:3306/hive_1_2_0?createDatabaseIfNotExist=true</value>

  </property>

  <property>

    <name>javax.jdo.option.ConnectionDriverName</name>

    <value>com.mysql.jdbc.Driver</value>

  </property>

  <property>

    <name>javax.jdo.PersistenceManagerFactoryClass</name>

    <value>org.datanucleus.api.jdo.JDOPersistenceManagerFactory</value>

  </property>

  <property>

    <name>javax.jdo.option.DetachAllOnCommit</name>

    <value>true</value>

  </property>

  <property>

    <name>javax.jdo.option.NonTransactionalRead</name>

    <value>true</value>

  </property>

  <property>

    <name>javax.jdo.option.ConnectionUserName</name>

    <value>root</value>

  </property>

  <property>

    <name>javax.jdo.option.ConnectionPassword</name>

    <value>abc123</value>

  </property>

  <property>

    <name>javax.jdo.option.Multithreaded</name>

    <value>true</value>

  </property>

  <property>

    <name>datanucleus.connectionPoolingType</name>

    <value>BoneCP</value>

  </property>

  <property>

    <name>hive.metastore.warehouse.dir</name>

    <value>/user/hive/warehouse</value>

  </property>

  <property>

      <name>fs.default.name</name>

      <value>hdfs://cloud-001:8020</value>

  </property>

  <property>

    <name>hive.server2.thrift.port</name>

    <value>10000</value>

  </property>

  <property>

    <name>hive.server2.thrift.bind.host</name>

    <value>cloud-001</value>

  </property>

</configuration>

  • 复制一个mysql的jdbc驱动到$SPARK_HOME/lib

如cp $HIVE_HOME/lib/mysql-connector-java-5.1.31.jar $SPARK_HOME/lib

三、 standlone 模式启动集群

        启动master和worker:

                    $SPARK_HOME/sbin/start-all.sh

        启动spark的hive服务

                    $SPARK_HOME/sbin/start-thriftserver.sh --master spark://cloud-001:7077 --driver-memory 1g  --executor-memory 1g --total-executor-cores 2

四、 测试

测试spark-shell

    $SPARK_HOME/bin/spark-shell --master spark://cloud-001:7077 --driver-memory 1g  --executor-memory 1g --total-executor-cores 2

测试spark-submit

            $SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://cloud-001:7077 --executor-memory 1G --total-executor-cores 2 $SPARK_HOME/lib/spark-examples-1.4.1-hadoop2.6.0.jar 10000

    测试spark-sql

           $SPARK_HOME/bin/spark-sql --master spark://cloud-001:7077 --driver-memory 1g  --executor-memory 1g --total-executor-cores 2

    测试beeline

    $SPARK_HOME/bin/beeline -u jdbc:hive2://cloud-001:10000 -n hadoop

相关文章
相关标签/搜索