若是奇数次是b - a
不然是a - bnode
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') //#define ivorysi using namespace std; typedef long long int64; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int64 A,B,C,K; void Solve() { read(A);read(B);read(C);read(K); if(K & 1) {out(B - A);enter;} else {out(A - B);enter;} } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
找数值最长的连续的一段子序列,而后将剩下的数必需要移动了ios
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 200005 //#define ivorysi using namespace std; typedef long long int64; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,a[MAXN],pos[MAXN],dp[MAXN]; void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) { read(a[i]); pos[a[i]] = i; } dp[1] = 1; for(int i = 2 ; i <= N ; ++i) { if(pos[i - 1] < pos[i]) dp[i] = dp[i - 1] + 1; else dp[i] = 1; } int res = N; for(int i = 1 ; i <= N ; ++i) { res = min(res,N - dp[i]); } out(res);enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
数列确定是一段连续递增的好几段拼起来,都找到加上最大值就能够了c++
#include <iostream> #include <cstdio> #include <vector> #include <algorithm> #include <cmath> #include <cstring> //#define ivorysi #define pb push_back #define MAXN 200005 #define eps 1e-12 #define space putchar(' ') #define enter putchar('\n') #define mp make_pair #define fi first #define se second #define mo 974711 using namespace std; typedef long long int64; typedef double db; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 - '0' + c; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) putchar('-'),x = -x; while(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,a[MAXN]; void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) read(a[i]); a[0] = -1; for(int i = 1 ; i <= N ; ++i) { if(a[i - 1] < a[i] - 1) { puts("-1"); return; } } int64 ans = 0; for(int i = N ; i >= 1 ; --i) { if(a[i] == a[i + 1] - 1) continue; ans += a[i]; } printf("%lld\n",ans); } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); return 0; }
答案是直径的长度 / 2 + 1spa
咱们对于直径长度为奇数,也就是有偶数个点,若是直径长度增长颜色也要增长,因此咱们不增长直径
咱们枚举做为直径中心的两个点,咱们能达到这个要求仅当距离中心距离相同的点点度相同便可rest
对于直径长度为偶数,也就是有奇数个点,咱们分两种状况,第一种是只有一个中心
第二种是有两个中心,咱们枚举两个中心,而后要求这两个中心所在的树的深度最大的不超过中心的一半便可code
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') #define MAXN 105 //#define ivorysi using namespace std; typedef long long int64; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } struct node { int to,next; }E[MAXN * 2]; int N,sumE,head[MAXN],A[MAXN],B[MAXN],dep[MAXN],ch[MAXN],x[MAXN]; void add(int u,int v) { E[++sumE].to = v;E[sumE].next = head[u];head[u] = sumE; } int Calc(int u,int fa) { int res = dep[u]; ch[u] = 0; for(int i = head[u] ; i ; i = E[i].next) { int v = E[i].to; if(v != fa) { ch[u]++; dep[v] = dep[u] + 1; res = max(res,Calc(v,u)); } } return res; } void Solve() { read(N); if(N == 1) { puts("1 2");return; } for(int i = 1 ; i < N ; ++i) { read(A[i]);read(B[i]); add(A[i],B[i]);add(B[i],A[i]); } int D = 0; for(int i = 1 ; i < N ; ++i) { dep[A[i]] = dep[B[i]] = 0; D = max(D,Calc(A[i],B[i]) + Calc(B[i],A[i]) + 1); } out(D / 2 + 1);space; if(D & 1) { int64 ans = 9e18; for(int i = 1 ; i < N ; ++i) { dep[A[i]] = dep[B[i]] = 0; int64 tmp = 2; if(Calc(A[i],B[i]) == D / 2 && Calc(B[i],A[i]) == D / 2) { memset(x,0,sizeof(x)); for(int j = 1 ; j <= N ; ++j) x[dep[j]] = max(x[dep[j]],ch[j]); for(int k = 0 ; k < D / 2 ; ++k) tmp = tmp * x[k]; ans = min(ans,tmp); } } out(ans);enter; } else { int64 ans = 9e18; for(int i = 1 ; i < N ; ++i) { dep[A[i]] = dep[B[i]] = 0; int64 tmp = 1; int x0 = Calc(A[i],B[i]),x1 = Calc(B[i],A[i]); if(x0 > x1) {swap(x0,x1),swap(A[i],B[i]);} if(x0 == D / 2 - 1 && x1 == D / 2) { dep[B[i]] = 0; Calc(B[i],0); memset(x,0,sizeof(x)); for(int j = 1 ; j <= N ; ++j) x[dep[j]] = max(x[dep[j]],ch[j]); for(int k = 0 ; k < D / 2 ; ++k) tmp = tmp * x[k]; ans = min(ans,tmp); } } for(int i = 1 ; i < N ; ++i) { dep[A[i]] = dep[B[i]] = 0; int x0 = Calc(A[i],B[i]),x1 = Calc(B[i],A[i]); if(max(x0,x1) <= D / 2) { memset(x,0,sizeof(x)); int64 tmp = 2; for(int j = 1 ; j <= N ; ++j) x[dep[j]] = max(x[dep[j]],ch[j]); for(int k = 0 ; k <= D ; ++k) { if(x[k]) tmp *= x[k]; } ans = min(ans,tmp); } } out(ans);enter; } } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
Let's restate the problem = =get
咱们就至关于先有一个一个标号为0,值为0的点string
而后每次新加一个标号为k的点在p点上,咱们要新加的k点严格大于p点的值it
这个能够用dp来完成io
dp[u][x]表示用u个点,根节点值为x的方案数,标号就是0 - u - 1
答案就是dp[N + 1][0]
转移就是
\(dp[n] = \sum_{y > x} dp[n - k][x] * dp[k][y] \binom{n - 2}{k - 1}\)
咱们每次把y当作1号点,x当作0号点能够不重不漏
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n') //#define ivorysi using namespace std; typedef long long int64; template<class T> void read(T &res) { res = 0;char c = getchar();T f = 1; while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10); } int N,K,MOD; int dp[305][305],sum[305][305],C[305][305]; int inc(int a,int b) { return a + b >= MOD ? a + b - MOD : a + b; } int mul(int a,int b) { return 1LL * a * b % MOD; } void update(int &x,int y) { x = inc(x,y); } void Solve() { read(N);read(K);read(MOD); C[0][0] = 1; for(int i = 1 ; i <= N ; ++i) { C[i][0] = 1; for(int j = 1 ; j <= i ; ++j) { C[i][j] = inc(C[i - 1][j - 1],C[i - 1][j]); } } for(int j = 0 ; j <= K ; ++j) {sum[1][j] = (j + 1) % MOD;dp[1][j] = 1;} for(int i = 2 ; i <= N + 1; ++i) { for(int j = 1 ; j < i ; ++j) { for(int k = 0 ; k <= K ; ++k) { update(dp[i][k],mul(mul(dp[j][k],inc(sum[i - j][K],MOD - sum[i - j][k])),C[i - 2][i - j - 1])); } } sum[i][0] = dp[i][0]; for(int k = 1 ; k <= K ; ++k) sum[i][k] = inc(sum[i][k - 1],dp[i][k]); } out(dp[N + 1][0]);enter; } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }
咱们只要构造出一张图
例如110[00011001]
这个点能够转移到
1100[0011001]和1101[1001]和110[]
咱们若s在集合中[s] = 1
每一个点t的值是t[]
若是t是s的子序列,转移的路径是惟一的,因此只要用dp求路径条数便可
#include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define space putchar(' ') #define enter putchar('\n') #define mp make_pair #define pb push_back #define MAXN 200005 //#define ivorysi using namespace std; typedef long long int64; template<class T> void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 + c - '0'; c = getchar(); } res *= f; } template<class T> void out(T x) { if(x < 0){putchar('-');x = -x;} if(x >= 10) out(x / 10); putchar('0' + x % 10); } int N,K,cnt; char s[25][(1 << 20) + 5]; vector<int> v[25]; int dp[42000005]; int p0[25],p1[25]; void Solve() { read(N);read(K); for(int i = 0 ; i <= N ; ++i) scanf("%s",s[i]); for(int i = 1 ; i <= N ; ++i) { v[i].resize((i + 1) * (1 << i)); int s = v[i].size(); for(int j = 0 ; j < s ; ++j) v[i][j] = ++cnt; } for(int i = 1 ; i <= N ; ++i) { for(int j = 0 ; j < (1 << i) ; ++j) { if(s[i][j] == '1') { dp[v[i][j * (i + 1) + i]]++; } } } for(int i = N ; i >= 1 ; --i) { for(int S = 0 ; S < (1 << i) ; ++S) { p0[0] = -1,p1[0] = -1; for(int j = 0 ; j <= i ; ++j) { p1[j + 1] = p1[j];p0[j + 1] = p0[j]; if(S >> j & 1) p1[j + 1] = j; else p0[j + 1] = j; } for(int j = i ; j >= 0 ; --j) { int u = v[i][S * (i + 1) + j]; int b = S & ((1 << j) - 1),f = S >> j; if(dp[u]) { if(p0[j] != -1) { int p = ((f << 1) << p0[j]) + (S & (1 << p0[j]) - 1); int l = p0[j] + 1 + i - j; dp[v[l][p * (l + 1) + p0[j]]] += dp[u]; } if(p1[j] != -1) { int p = ((f << 1 | 1) << p1[j]) + (S & (1 << p1[j]) - 1); int l = p1[j] + 1 + i - j; dp[v[l][p * (l + 1) + p1[j]]] += dp[u]; } if(j != 0 && j != i) { int l = i - j; dp[v[l][f * (l + 1)]] += dp[u]; } } } } } for(int i = N ; i >= 1 ; --i) { for(int j = 0 ; j < (1 << i) ; ++j) { if(dp[v[i][j * (i + 1)]] >= K) { for(int k = i - 1; k >= 0 ; --k) { putchar('0' + ((j >> k) & 1)); } enter; return; } } } puts(""); } int main() { #ifdef ivorysi freopen("f1.in","r",stdin); #endif Solve(); }