春节前的两个星期,本人写了两篇Spring Boot 应用集成Prometheus + Grafana实现监控告警功能的文章。java
凭借着 Spring Boot Actuator 模块 + micrometer-registry-prometheus
模块,Spring Boot 应用和 Prometheus 集成变得很是的简单。git
可是一些老项目多是非 Spring Boot 的 Spring MVC 项目。这一次就是来说一讲传统 Spring MVC 如何集成 Prometheus。也算是把这个系列完整一下。github
相关的理论部分,实际上在往期两篇文章中都有说明,这里就不赘述了,直接进入实操部分。spring
这里实际上就是引入 Prometheus 最基础的 Java 客户端依赖。安全
<properties> ... <io.prometheus.version>0.8.0</io.prometheus.version> </properties> <!-- The client --> <dependency> <groupId>io.prometheus</groupId> <artifactId>simpleclient</artifactId> <version>${io.prometheus.version}</version> </dependency> <!-- Hotspot JVM metrics--> <dependency> <groupId>io.prometheus</groupId> <artifactId>simpleclient_hotspot</artifactId> <version>${io.prometheus.version}</version> </dependency> <!-- https://mvnrepository.com/artifact/io.prometheus/simpleclient_servlet --> <dependency> <groupId>io.prometheus</groupId> <artifactId>simpleclient_servlet</artifactId> <version>${io.prometheus.version}</version> </dependency>
像
simpleclient_hotspot
这种就是帮忙作了Hotspot JVM metrics 的收集,还有些其余的依赖能够参照
官方github自行研究选择
<servlet> <servlet-name>metrics</servlet-name> <servlet-class>io.prometheus.client.exporter.MetricsServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>metrics</servlet-name> <url-pattern>/metrics</url-pattern> </servlet-mapping>
若是有集成shiro
、spring security
的话,记得配置一下对应的路径
在启动类中增长以下代码,app
@PostConstruct public void init() { //输出JVM信息 DefaultExports.initialize(); }
如今启动项目,访问http://ip:port/metrics
,能够看到相关的指标数据:jvm
# HELP jvm_buffer_pool_used_bytes Used bytes of a given JVM buffer pool. # TYPE jvm_buffer_pool_used_bytes gauge jvm_buffer_pool_used_bytes{pool="direct",} 1791403.0 jvm_buffer_pool_used_bytes{pool="mapped",} 0.0 # HELP jvm_buffer_pool_capacity_bytes Bytes capacity of a given JVM buffer pool. # TYPE jvm_buffer_pool_capacity_bytes gauge jvm_buffer_pool_capacity_bytes{pool="direct",} 1791403.0 jvm_buffer_pool_capacity_bytes{pool="mapped",} 0.0 # HELP jvm_buffer_pool_used_buffers Used buffers of a given JVM buffer pool. # TYPE jvm_buffer_pool_used_buffers gauge jvm_buffer_pool_used_buffers{pool="direct",} 44.0 jvm_buffer_pool_used_buffers{pool="mapped",} 0.0 # HELP jvm_memory_pool_allocated_bytes_total Total bytes allocated in a given JVM memory pool. Only updated after GC, not continuously. # TYPE jvm_memory_pool_allocated_bytes_total counter jvm_memory_pool_allocated_bytes_total{pool="Code Cache",} 2.4131136E7 jvm_memory_pool_allocated_bytes_total{pool="PS Eden Space",} 1.157973728E9 jvm_memory_pool_allocated_bytes_total{pool="PS Old Gen",} 4.2983992E7 jvm_memory_pool_allocated_bytes_total{pool="PS Survivor Space",} 2.3271936E7 jvm_memory_pool_allocated_bytes_total{pool="Compressed Class Space",} 6964912.0 jvm_memory_pool_allocated_bytes_total{pool="Metaspace",} 5.9245208E7 # HELP jvm_classes_loaded The number of classes that are currently loaded in the JVM # TYPE jvm_classes_loaded gauge ......
有了数据以后,后面的步骤(Prometheus 采集指标,可视化)在SpringBoot 微服务应用集成Prometheus + Grafana 实现监控告警有详细的说明。ide
Prometheus提供了4中不一样的Metrics类型:Counter, Gauge, Histogram, Summary。微服务
至于怎么使用,官方doc中详细的说明,这里简单举两个例子:测试
你能够先声明一个专门的拦截器,来处理统计Metrics的操做:
public class PrometheusMetricsInterceptor extends HandlerInterceptorAdapter { @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { return super.preHandle(request, response, handler); } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { super.afterCompletion(request, response, handler, ex); } }
计数器能够用于记录只会增长不会减小的指标类型,好比记录应用请求的总量(http_requests_total)。
对于Counter类型的指标,只包含一个inc()方法,用于计数器+1
public class PrometheusMetricsInterceptor extends HandlerInterceptorAdapter { // 用请求路径和http method 当作标签 private Counter requestCounter = Counter.build() .name("io_namespace_http_requests_total") .labelNames("path", "method") .help("Total requests.") .register(); @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { return super.preHandle(request, response, handler); } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { // 调用inc() 技术+1 requestCounter.labels(request.getRequestURI(), request.getMethod()).inc(); super.afterCompletion(request, response, handler, ex); } }
一些对应的经常使用的聚合操做的PromQL:
# 经常使用PromQL ## 查询应用的请求总量 sum(io_namespace_http_requests_total) ## 查询每秒Http请求量 sum(rate(io_wise2c_gateway_requests_total[5m])) ## 查询当前应用请求量Top N的URI topk(10, sum(io_namespace_http_requests_total) by (path))
主要用于在指定分布范围内(Buckets)记录大小(如http request bytes)或者事件发生的次数。
以请求响应时间requests_latency_seconds为例,假如咱们须要记录http请求响应时间符合在分布范围{.005, .01, .025, .05, .075, .1, .25, .5, .75, 1, 2.5, 5, 7.5, 10}中的次数时。
public class PrometheusMetricsInterceptor extends HandlerInterceptorAdapter { private Histogram requestLatencyHistogram = Histogram.build() .labelNames("path", "method", "code") .name("io_namespace_http_requests_latency_seconds_histogram") .help("Request latency in seconds.") .register(); // spring interceptor 单例,线程不安全,因此使用threadlocal private ThreadLocal<Histogram.Timer> timerThreadLocal = new ThreadLocal<>(); @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { Histogram.Timer histogramRequestTimer = requestLatencyHistogram.labels(request.getRequestURI(), request.getMethod()).startTimer(); timerThreadLocal.set(histogramRequestTimer); return super.preHandle(request, response, handler); } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { Histogram.Timer histogramRequestTimer = timerThreadLocal.get(); histogramRequestTimer.observeDuration(); timerThreadLocal.remove(); super.afterCompletion(request, response, handler, ex); } }
最后访问前面配置的 /metrics
端点,查看对应埋点数据。
到这里传统Spring MVC如何集成 Prometheus 也就算讲述完毕了,能够结合前两篇文章一块儿食用。
但愿能给你带来一些收获。
若是本文有帮助到你,但愿能点个赞,这是对个人最大动力🤝🤝🤗🤗。