关系型数据库工做原理-快速缓存(翻译自Coding-Geek文章)

本文翻译自Coding-Geek文章:《 How does a relational database work》。算法

原文连接:http://coding-geek.com/how-databases-work/#Buffer-Replacement_strategies数据库

先翻译快速缓存章节。兴许有时间再翻译其余章节。缓存

翻译内容在原文的文件夹:
markdown

这里写图片描写叙述

1、数据管理器

这里写图片描写叙述

数据查询器运行查询操做,从数据表中获取数据。它向Data Manger发送请求,获取数据。当中存在2个问题:

  1. 关系型数据使用事物模型。当数据库在运行改动操做时,不能运行查询操做。避免查询出脏数据。

  2. 数据提取是最慢的数据库操做,因为数据要从磁盘上读取。

    所以,数据库必需要有一个很是强大的数据缓存系统。网络

本章。咱们将看一下关系数据是怎样解决这两个问题的。数据结构

咱们不会探讨数据库是怎样从磁盘载入数据的。这个不是本文的重点(受篇幅所限,不展开分析)。post

2、快速缓存器

这里写图片描写叙述

正如我以前所言。数据库的性能瓶颈是I/O。

为了提高性能,现代数据库都使用了快速缓存。性能

数据查询器从Cache Manger中获取数据。而不是直接从磁盘文件里读取数据。google

Cache Manger管理着一片内存区域。叫缓存池。 直接从内存获取数据,使得訪问数据库的性能日新月异。.net

但是,很是难评估使用快速缓存的重要性有多大,这取决于你要作什么样的数据库操做。

  • 顺序訪问 VS 随机訪问。

  • 读操做 VS 写操做。

以及数据库使用的是什么样的磁盘

  • 7.2k/10k/15k rpm HDD
  • SSD
  • RAID 1/5/…

但是,我敢说使用内存快速缓存比不适用缓存直接从磁盘读数据快100到10万倍。
这也致使另一个问题(所有的数据库都有这个问题……), 快速缓存器需要在查询器訪问数据以前预取数据,不然查询器需要挂起,等待快速缓存器把数据从磁盘载入到内存先。

3、缓存数据预取

问题的核心就在“数据预取”。

数据查询器清楚需要哪些数据,因为它了解每一次查询操做的详细要求,也清楚数据库表的存储结构。数据预取的基本逻辑是这种:

  1. 数据查询器在获取第一批数据时通知Cache Manger提早载入第二批数据到缓存中。
  2. 数据查询器在获取第二批数据时通知Cache Manger提早载入第三批数据,而第一批数据可以从缓存中移除了。

  3. …….

Cache Manger存储所有的数据在缓存池中。

为了肯定缓存池中数据是否正在被使用,Cache Manger需要维护一些关于这些数据的额外信息(被称之为锁的东西)。

但有时。数据查询器不清楚下一步需要什么数据,或者数据库没有提供指定预取哪些数据的功能。取而代之,数据库提供的是随机预取功能(好比,查询了数据1,2,3后,它因为你可能还需要7,8,9,提早把7,8,9载入到缓存中)或者顺序缓存功能(运行一次查询后。将磁盘上查询数据临近的其余数据也预取到缓存中)。

为了评估Cache Manger预期机制工做的效果。现代数据库系统提供一个指标度量:缓存命中率。缓存命中率描写叙述查询器从缓存中拿到数据的概率(在不需要读磁盘文件的状况下)。

说明:糟糕的缓存命中率。并不老是意味Cache工做得很差。不少其余信息可參考Oracle说明文档。

但是,快速缓存内存大小是受限的。缓存内容需要不断吐故纳新。缓存数据的载入和移除都需要消耗磁盘I/O和网络I/O资源。

假设某个查询操做要经常运行,缓存数据频繁的载入和移除是很是低效的。为了解决问题。现代数据库都使用了一些缓存置换策略。

4、缓存置换策略

大多数现代数据库缓存置换策略都使用LRU算法,至少SQL Server, MySQL, Oracle and DB2是这种。

1. LRU

LRU的意思是非近期当前使用。这个算法的是基于这样一种假设:近期使用过的数据,在未来被再次使用的几率很是大,需要驻留在缓存中。反之,非近期当前使用的数据可移除。

这里写图片描写叙述

为了方便理解,咱们假设缓存中的数据未被加锁(所以可被移除)。

举个样例说明它的工做原理。这个简单的演示样例中缓存池能容纳3个数据。

  1. Cache Manger使用数据1后。将1放入缓存。

  2. Cache Manger使用数据4后,将4放入缓存。
  3. Cache Manger使用数据3后。将3放入缓存。

  4. Cache Manger使用数据9后。将9放入缓存。

    因为缓存已满,需要先移除一条数据。移除哪一条?
    依据LRU原则,1是最远当前使用的数据,移除1后增长9。

  5. Cache Manger使用数据4后放入缓存,4变成了近期被使用过的数据。调整顺序。

  6. Cache Manger使用数据1后放入缓存,1变成了近期被使用过的数据。3被移除。
  7. ……

算法OK。但有一些限制,假设读取的是一张大表呢? 换言之。读取的表数据太大,超过了缓存空间的大小。使用该算法将清除缓存以前所有的数据,即便新载入上来的这张大表数据仅仅会使用一次就再也不使用。

2. 算法改进

为解决问题。一些数据库管理系统加了一些特殊规则。好比:Oracle规则说明:

对于超级大表的读取,直接从磁盘文件里读取数据。避免是用快速缓存。对于中型表。可以从磁盘文件直接读也可以用缓存。假设使用缓存应该把读取的数据放到LRU列表末尾(这样,新增长缓存数据时将先把该表的数据移除)。

LRU算法有高级版本号,叫LRU-K。好比SQL Server使用的LRU-K, K=2。

K表明的是考虑近期时间段,数据訪问的次数。
前面的样例是LRU-K算法最简单的样例。仅仅考虑一次訪问。K = 1。LRU-K的原理例如如下:

  1. 记录数据的近期訪问次数(最多记录K次)。
  2. 依据数据訪问次数,设置一个权值。近期訪问次数越多的权值越大。
  3. 当一批新的数据载入到缓存中时,权值大的数据不会被移除,即便该数据是很是早就载入到缓存中的。

  4. 假设数据长时间未被再使用,权值会逐渐减小。

权值的计算是很是耗资源的。这也是为何 SQL Server使用K=2的缘由。这种设置方式。投入产出比較高。

想更深刻的了解LRU算法,可以參考一下算法文档(文档google)。

3. 其余算法

另外一些其余算法策略,用于管理快速缓存器。

  • 2Q(类似LRU-K算法)
  • CLOCK(类似LRU-K算法)
  • MRU(用得比較多的算法。逻辑类似LRU。用的是另外一套规则)
  • LRFU(近期、最频繁使用算法)
  • ……

一些数据库赞成你使用除默认算法外的其余算法。多种方式可选。

5、写缓存器

前讨论的最多的是读缓存器。它在数据使用以前将其提早载入到内存。数据库中还存在一种写缓存器,它将屡次操做改动的数据存储累计起来,一次写到磁盘文件。减小对磁盘IO的频繁訪问(数据库瓶颈在I/O)。

谨记,快速缓存中存储的是分页数据而不是人们直观印象中的行数据。假设缓存中的某一页数据被改动了,尚未保存到磁盘上,这页被称为“脏页”。有多种策略算法能评估脏页数据写到磁盘上的最佳时机,而这也和事物强相关(事务是下一章节将展开的内容)。

已翻译的《How does a relational database work》其余章节连接:
1. 关系型数据库工做原理-时间复杂度:http://blog.csdn.net/ylforever/article/details/51205332
2. 关系型数据库工做原理-归并排序:http://blog.csdn.net/ylforever/article/details/51216916
3. 关系型数据库工做原理-数据结构:http://blog.csdn.net/ylforever/article/details/51278954
4. 关系型数据库工做原理-快速缓存:http://blog.csdn.net/ylforever/article/details/50990121
5. 关系型数据库工做原理-事务管理(一):http://blog.csdn.net/ylforever/article/details/51048945
6. 关系型数据库工做原理-事务管理(二):http://blog.csdn.net/ylforever/article/details/51082294

相关文章
相关标签/搜索