嘟嘟嘟
首先\(O(n ^ 2)\)你们都会,枚举最长边,而后找两条短边知足两边之大于第三边便可。
而后估计就无法优化了。
正难则反,若是枚举的两条短边小于等于第三边会怎么样呢?发现\(a_i \leqslant 10 ^ 5\),那就能够FFT求出凑出每一条边的方案了,记为\(f(i)\)。不过还要减去本身配本身的状况,以及每一种方案实际上被算了两遍。
那么咱们能够枚举最长边,而后全部不合法的方案就是\(cnt(i) * \sum _{j = 1} ^ {i} f(j)\)了,\(cnt(i)\)表示长度为\(i\)的边的个数。php
#include<cstdio> #include<iostream> #include<cmath> #include<cstring> #include<algorithm> #include<cstdlib> #include<cctype> #include<map> #include<queue> #include<vector> #include<assert.h> using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline typedef long long ll; typedef double db; const int INF = 0x3f3f3f3f; const db eps = 1e-8; const int maxn = 3e5 + 5; const db PI = acos(-1); In ll read() { ll ans = 0; char ch = getchar(), las = ' '; while(!isdigit(ch)) las = ch, ch = getchar(); while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar(); if(las == '-') ans = -ans; return ans; } In void write(ll x) { if(x < 0) putchar('-'), x = -x; if(x >= 10) write(x / 10); putchar(x % 10 + '0'); } In void MYFILE() { #ifndef mrclr freopen("ha.in", "r", stdin); freopen("ha.out", "w", stdout); #endif } int n, Max = 0, a[maxn], cnt[maxn]; ll ans[maxn]; int rev[maxn]; struct Comp { db x, y; In Comp operator + (const Comp& oth)const { return (Comp){x + oth.x, y + oth.y}; } In Comp operator - (const Comp& oth)const { return (Comp){x - oth.x, y - oth.y}; } In Comp operator * (const Comp& oth)const { return (Comp){x * oth.x - y * oth.y, x * oth.y + y * oth.x}; } friend In void swap(Comp& a, Comp& b) { swap(a.x, b.x); swap(a.y, b.y); } }b[maxn], c[maxn], ret[maxn]; In void fft(Comp* a, int len, int flg) { for(int i = 0; i < len; ++i) if(i < rev[i]) swap(a[i], a[rev[i]]); for(int i = 1; i < len; i <<= 1) { Comp omg = (Comp){cos(PI / i), sin(PI / i) * flg}; for(int j = 0; j < len; j += (i << 1)) { Comp o = (Comp){1, 0}; for(int k = 0; k < i; ++k, o = o * omg) { Comp tp1 = a[k + j], tp2 = o * a[k + j + i]; a[k + j] = tp1 + tp2, a[k + j + i] = tp1 - tp2; } } } } int main() { // MYFILE(); int T = read(); while(T--) { n = read(); Mem(cnt, 0); Max = 0; for(int i = 0; i < maxn; ++i) b[i] = c[i] = (Comp){0, 0}; for(int i = 1; i <= n; ++i) { ++cnt[a[i] = read()]; Max = max(Max, a[i]); } for(int i = 1; i <= Max; ++i) b[i] = c[i] = (Comp){1.0 * cnt[i], 0}; int len = 1, lim = 0; while(len <= Max + Max) len <<= 1, ++lim; for(int i = 0; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (lim - 1)); fft(b, len, 1), fft(c, len, 1); for(int i = 0; i < len; ++i) ret[i] = b[i] * c[i]; fft(ret, len, -1); for(int i = 1; i <= Max; ++i) { ans[i] = (ll)(ret[i].x / len + 0.5); if(!(i & 1)) ans[i] -= cnt[i >> 1]; ans[i] >>= 1; } ll ans1 = 0, sum = 0, ans2 = 1LL * n * (n - 1) * (n - 2) / 6; for(int i = 1; i <= Max; ++i) sum += ans[i], ans1 += cnt[i] * sum; printf("%.7lf\n", 1.0 * (ans2 - ans1) / ans2); } return 0; }