经典监督学习方法

生成算法尝试去找这个数据到底是怎么生成的(产生的),然后再对一个信号进行分类。基于你的生成假设,哪个类别最有可能产生这个信号,这个信号就属于那个类别。 判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后模型学习到差别之后简单地对给定的一个信号进行分类。   在机器学习中,无监督学习(Unsupervised learning)最典型的就是聚类,事先不知道样本的类别,通过某种办法,把相似的
相关文章
相关标签/搜索