时间复杂度趣图分析

正文: 

 

 

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=png

时间复杂度的意义算法

 

究竟什么是时间复杂度呢?让咱们来想象一个场景:某一天,小灰和大黄同时加入了一个公司......编程

640?wx_fmt=jpeg

一天事后,小灰和大黄各自交付了代码,两端代码实现的功能都差很少。大黄的代码运行一次要花100毫秒,内存占用5MB。小灰的代码运行一次要花100秒,内存占用500MB。因而......函数

640?wx_fmt=jpeg

640?wx_fmt=jpeg

因而可知,衡量代码的好坏,包括两个很是重要的指标:spa

1.运行时间;翻译

2.占用空间。code

640?wx_fmt=jpeg

640?wx_fmt=jpeg

 

640?wx_fmt=png

基本操做执行次数内存

 

关于代码的基本操做执行次数,咱们用四个生活中的场景,来作一下比喻:get

场景1:给小灰一条长10寸的面包,小灰每3天吃掉1寸,那么吃掉整个面包须要几天?数学

640?wx_fmt=jpeg

答案天然是 3 X 10 = 30天。string

若是面包的长度是 N 寸呢?

此时吃掉整个面包,须要 3 X n = 3n 天。

若是用一个函数来表达这个相对时间,能够记做 T(n) = 3n。

场景2:给小灰一条长16寸的面包,小灰每5天吃掉面包剩余长度的一半,第一次吃掉8寸,第二次吃掉4寸,第三次吃掉2寸......那么小灰把面包吃得只剩下1寸,须要多少天呢?

这个问题翻译一下,就是数字16不断地除以2,除几回之后的结果等于1?这里要涉及到数学当中的对数,以2位底,16的对数,能够简写为log16。

所以,把面包吃得只剩下1寸,须要 5 X log16 = 5 X 4 = 20 天。

若是面包的长度是 N 寸呢?

须要 5 X logn = 5logn天,记做 T(n) = 5logn。

场景3:给小灰一条长10寸的面包和一个鸡腿,小灰每2天吃掉一个鸡腿。那么小灰吃掉整个鸡腿须要多少天呢?

640?wx_fmt=jpeg

答案天然是2天。由于只说是吃掉鸡腿,和10寸的面包没有关系 。

若是面包的长度是 N 寸呢?

不管面包有多长,吃掉鸡腿的时间仍然是2天,记做 T(n) = 2。

场景4:给小灰一条长10寸的面包,小灰吃掉第一个一寸须要1天时间,吃掉第二个一寸须要2天时间,吃掉第三个一寸须要3天时间.....每多吃一寸,所花的时间也多一天。那么小灰吃掉整个面包须要多少天呢?

答案是从1累加到10的总和,也就是55天。

若是面包的长度是 N 寸呢?

此时吃掉整个面包,须要 1+2+3+......+ n-1 + n = (1+n)*n/2 = 0.5n^2 + 0.5n。

记做 T(n) = 0.5n^2 + 0.5n。

640?wx_fmt=jpeg

上面所讲的是吃东西所花费的相对时间,这一思想一样适用于对程序基本操做执行次数的统计。刚才的四个场景,分别对应了程序中最多见的四种执行方式:

场景1:T(n) = 3n,执行次数是线性的。

  1.  
    void eat1(int n){
  2.  
         for(int i=0; i<n; i++){;
  3.  
            System. out.println("等待一天");
  4.  
            System. out.println("等待一天");
  5.  
            System. out.println("吃一寸面包");
  6.  
        }
  7.  
    }
  8.  
    vo

场景2:T(n) = 5logn,执行次数是对数的。

  1.  
    void eat2(int n){
  2.  
        for(int i=1; i<n; i*=2){
  3.  
           System. out.println("等待一天");
  4.  
           System. out.println("等待一天");
  5.  
           System. out.println("等待一天");
  6.  
           System. out.println("等待一天");
  7.  
           System. out.println("吃一半面包");
  8.  
       }
  9.  
    }

场景3:T(n) = 2,执行次数是常量的。

  1.  
    void eat3(int n){
  2.  
       System. out.println("等待一天");
  3.  
       System. out.println("吃一个鸡腿");
  4.  
    }

场景4:T(n) = 0.5n^2 + 0.5n,执行次数是一个多项式。

  1.  
    void eat4(int n){
  2.  
        for(int i=0; i<n; i++){
  3.  
            for(int j=0; j<i; j++){
  4.  
               System. out.println("等待一天");
  5.  
           }
  6.  
           System. out.println("吃一寸面包");
  7.  
       }
  8.  
    }

 

640?wx_fmt=png

渐进时间复杂度

 

有了基本操做执行次数的函数 T(n),是否就能够分析和比较一段代码的运行时间了呢?仍是有必定的困难。

好比算法A的相对时间是T(n)= 100n,算法B的相对时间是T(n)= 5n^2,这两个到底谁的运行时间更长一些?这就要看n的取值了。

因此,这时候有了渐进时间复杂度(asymptotic time complectiy)的概念,官方的定义以下:

若存在函数 f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是T(n)的同数量级函数。

记做 T(n)= O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

渐进时间复杂度用大写O来表示,因此也被称为大O表示法。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

如何推导出时间复杂度呢?有以下几个原则:

  1. 若是运行时间是常数量级,用常数1表示;

  2. 只保留时间函数中的最高阶项;

  3. 若是最高阶项存在,则省去最高阶项前面的系数。

让咱们回头看看刚才的四个场景。

场景1:

T(n) = 3n 

最高阶项为3n,省去系数3,转化的时间复杂度为:

T(n) =  O(n)

640?wx_fmt=png

场景2:

T(n) = 5logn 

最高阶项为5logn,省去系数5,转化的时间复杂度为:

T(n) =  O(logn)

640?wx_fmt=png

场景3:

T(n) = 2

只有常数量级,转化的时间复杂度为:

T(n) =  O(1)

640?wx_fmt=png

场景4:

T(n) = 0.5n^2 + 0.5n

最高阶项为0.5n^2,省去系数0.5,转化的时间复杂度为:

T(n) =  O(n^2)

640?wx_fmt=png

这四种时间复杂度究竟谁用时更长,谁节省时间呢?稍微思考一下就能够得出结论:

O(1)< O(logn)< O(n)< O(n^2)

在编程的世界中有着各类各样的算法,除了上述的四个场景,还有许多不一样形式的时间复杂度,好比:

O(nlogn), O(n^3), O(m*n),O(2^n),O(n!)

从此遨游在代码的海洋里,咱们会陆续遇到上述时间复杂度的算法。

640?wx_fmt=png

 

640?wx_fmt=png

时间复杂度的巨大差别

 

 

640?wx_fmt=jpeg

640?wx_fmt=jpeg

咱们来举过一个栗子:

算法A的相对时间规模是T(n)= 100n,时间复杂度是O(n)

算法B的相对时间规模是T(n)= 5n^2,时间复杂度是O(n^2)

算法A运行在小灰家里的老旧电脑上,算法B运行在某台超级计算机上,运行速度是老旧电脑的100倍。

那么,随着输入规模 n 的增加,两种算法谁运行更快呢?

640?wx_fmt=png

从表格中能够看出,当n的值很小的时候,算法A的运行用时要远大于算法B;当n的值达到1000左右,算法A和算法B的运行时间已经接近;当n的值愈来愈大,达到十万、百万时,算法A的优点开始显现,算法B则愈来愈慢,差距愈来愈明显。

这就是不一样时间复杂度带来的差距。

640?wx_fmt=jpeg

相关文章
相关标签/搜索