Flink入门(五)——DataSet Api编程指南

file

Apache Flink

Apache Flink 是一个兼顾高吞吐、低延迟、高性能的分布式处理框架。在实时计算崛起的今天,Flink正在飞速发展。因为性能的优点和兼顾批处理,流处理的特性,Flink可能正在颠覆整个大数据的生态。html

file

DataSet API

首先要想运行Flink,咱们须要下载并解压Flink的二进制包,下载地址以下:https://flink.apache.org/down... java

咱们能够选择Flink与Scala结合版本,这里咱们选择最新的1.9版本Apache Flink 1.9.0 for Scala 2.12进行下载。linux

下载成功后,在windows系统中能够经过Windows的bat文件或者Cygwin来运行Flink。c++

在linux系统中分为单机,集群和Hadoop等多种状况。git

请参考:Flink入门(三)——环境与部署github

Flink的编程模型,Flink提供了不一样的抽象级别以开发流式或者批处理应用,本文咱们来介绍DataSet API ,Flink最经常使用的批处理编程模型。算法

file

Flink中的DataSet程序是实现数据集转换的常规程序(例如,Filter,映射,链接,分组)。数据集最初是从某些来源建立的(例如,经过读取文件或从本地集合建立)。结果经过接收器返回,接收器能够例如将数据写入(分布式)文件或标准输出(例如命令行终端)。Flink程序能够在各类环境中运行,独立运行或嵌入其余程序中。执行能够在本地JVM中执行,也能够在许多计算机的集群上执行。apache

示例程序编程

如下程序是WordCount的完整工做示例。您能够复制并粘贴代码以在本地运行它。segmentfault

Java

public class WordCountExample {
    public static void main(String[] args) throws Exception {
        final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        DataSet<String> text = env.fromElements(
            "Who's there?",
            "I think I hear them. Stand, ho! Who's there?");

        DataSet<Tuple2<String, Integer>> wordCounts = text
            .flatMap(new LineSplitter())
            .groupBy(0)
            .sum(1);

        wordCounts.print();
    }

    public static class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
        @Override
        public void flatMap(String line, Collector<Tuple2<String, Integer>> out) {
            for (String word : line.split(" ")) {
                out.collect(new Tuple2<String, Integer>(word, 1));
            }
        }
    }
}

Scala

import org.apache.flink.api.scala._

object WordCount {
  def main(args: Array[String]) {

    val env = ExecutionEnvironment.getExecutionEnvironment
    val text = env.fromElements(
      "Who's there?",
      "I think I hear them. Stand, ho! Who's there?")

    val counts = text.flatMap { _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
      .map { (_, 1) }
      .groupBy(0)
      .sum(1)

    counts.print()
  }
}

数据集转换

数据转换将一个或多个DataSet转换为新的DataSet。程序能够将多个转换组合到复杂的程序集中。

DataSet API 中最重要的就是这些算子,咱们将数据接入后,经过这些算子对数据进行处理,获得咱们想要的结果。

Java版算子以下:

转换 描述
Map 采用一个数据元并生成一个数据元。data.map(new MapFunction<String, Integer>() { public Integer map(String value) { return Integer.parseInt(value); } });
FlatMap 采用一个数据元并生成零个,一个或多个数据元。data.flatMap(new FlatMapFunction<String, String>() { public void flatMap(String value, Collector<String> out) { for (String s : value.split(" ")) { out.collect(s); } } });
MapPartition 在单个函数调用中转换并行分区。该函数将分区做为Iterable流来获取,而且能够生成任意数量的结果值。每一个分区中的数据元数量取决于并行度和先前的 算子操做。data.mapPartition(new MapPartitionFunction<String, Long>() { public void mapPartition(Iterable<String> values, Collector<Long> out) { long c = 0; for (String s : values) { c++; } out.collect(c); } });
Filter 计算每一个数据元的布尔函数,并保存函数返回true的数据元。 重要信息:系统假定该函数不会修改应用谓词的数据元。违反此假设可能会致使错误的结果。data.filter(new FilterFunction<Integer>() { public boolean filter(Integer value) { return value > 1000; } });
Reduce 经过将两个数据元重复组合成一个数据元,将一组数据元组合成一个数据元。Reduce能够应用于完整数据集或分组数据集。data.reduce(new ReduceFunction<Integer> { public Integer reduce(Integer a, Integer b) { return a + b; } });若是将reduce应用于分组数据集,则能够经过提供CombineHintto 来指定运行时执行reduce的组合阶段的方式 setCombineHint。在大多数状况下,基于散列的策略应该更快,特别是若是不一样键的数量与输入数据元的数量相比较小(例如1/10)。
ReduceGroup 将一组数据元组合成一个或多个数据元。ReduceGroup能够应用于完整数据集或分组数据集。data.reduceGroup(new GroupReduceFunction<Integer, Integer> { public void reduce(Iterable<Integer> values, Collector<Integer> out) { int prefixSum = 0; for (Integer i : values) { prefixSum += i; out.collect(prefixSum); } } });
Aggregate 将一组值聚合为单个值。聚合函数能够被认为是内置的reduce函数。聚合能够应用于完整数据集或分组数据集。Dataset<Tuple3<Integer, String, Double>> input = // [...] DataSet<Tuple3<Integer, String, Double>> output = input.aggregate(SUM, 0).and(MIN, 2);您还可使用简写语法进行最小,最大和总和聚合。 Dataset<Tuple3<Integer, String, Double>> input = // [...] DataSet<Tuple3<Integer, String, Double>> output = input.sum(0).andMin(2);
Distinct 返回数据集的不一样数据元。它相对于数据元的全部字段或字段子集从输入DataSet中删除重复条目。data.distinct();使用reduce函数实现Distinct。您能够经过提供CombineHintto 来指定运行时执行reduce的组合阶段的方式 setCombineHint。在大多数状况下,基于散列的策略应该更快,特别是若是不一样键的数量与输入数据元的数量相比较小(例如1/10)。
Join 经过建立在其键上相等的全部数据元对来链接两个数据集。可选地使用JoinFunction将数据元对转换为单个数据元,或使用FlatJoinFunction将数据元对转换为任意多个(包括无)数据元。请参阅键部分以了解如何定义链接键。result = input1.join(input2) .where(0) // key of the first input (tuple field 0) .equalTo(1); // key of the second input (tuple field 1)您能够经过Join Hints指定运行时执行链接的方式。提示描述了经过分区或广播进行链接,以及它是使用基于排序仍是基于散列的算法。有关可能的提示和示例的列表,请参阅“ 转换指南”。 若是未指定提示,系统将尝试估算输入大小,并根据这些估计选择最佳策略。// This executes a join by broadcasting the first data set // using a hash table for the broadcast data result = input1.join(input2, JoinHint.BROADCAST_HASH_FIRST) .where(0).equalTo(1);请注意,链接转换仅适用于等链接。其余链接类型须要使用OuterJoin或CoGroup表示。
OuterJoin 在两个数据集上执行左,右或全外链接。外链接相似于常规(内部)链接,并建立在其键上相等的全部数据元对。此外,若是在另外一侧没有找到匹配的Keys,则保存“外部”侧(左侧,右侧或二者都满)的记录。匹配数据元对(或一个数据元和null另外一个输入的值)被赋予JoinFunction以将数据元对转换为单个数据元,或者转换为FlatJoinFunction以将数据元对转换为任意多个(包括无)数据元。请参阅键部分以了解如何定义链接键。input1.leftOuterJoin(input2) // rightOuterJoin or fullOuterJoin for right or full outer joins .where(0) // key of the first input (tuple field 0) .equalTo(1) // key of the second input (tuple field 1) .with(new JoinFunction<String, String, String>() { public String join(String v1, String v2) { // NOTE: // - v2 might be null for leftOuterJoin // - v1 might be null for rightOuterJoin // - v1 OR v2 might be null for fullOuterJoin } });
CoGroup reduce 算子操做的二维变体。将一个或多个字段上的每一个输入分组,而后关联组。每对组调用转换函数。请参阅keys部分以了解如何定义coGroup键。data1.coGroup(data2) .where(0) .equalTo(1) .with(new CoGroupFunction<String, String, String>() { public void coGroup(Iterable<String> in1, Iterable<String> in2, Collector<String> out) { out.collect(...); } });
Cross 构建两个输入的笛卡尔积(交叉乘积),建立全部数据元对。可选择使用CrossFunction将数据元对转换为单个数据元DataSet<Integer> data1 = // [...] DataSet<String> data2 = // [...] DataSet<Tuple2<Integer, String>> result = data1.cross(data2);注:交叉是一个潜在的很是计算密集型 算子操做它甚至能够挑战大的计算集群!建议使用crossWithTiny()crossWithHuge()来提示系统的DataSet大小。
Union 生成两个数据集的并集。DataSet<String> data1 = // [...] DataSet<String> data2 = // [...] DataSet<String> result = data1.union(data2);
Rebalance 均匀地Rebalance 数据集的并行分区以消除数据误差。只有相似Map的转换可能会遵循Rebalance 转换。DataSet<String> in = // [...] DataSet<String> result = in.rebalance() .map(new Mapper());
Hash-Partition 散列分区给定键上的数据集。键能够指定为位置键,表达键和键选择器函数。DataSet<Tuple2<String,Integer>> in = // [...] DataSet<Integer> result = in.partitionByHash(0) .mapPartition(new PartitionMapper());
Range-Partition Range-Partition给定键上的数据集。键能够指定为位置键,表达键和键选择器函数。DataSet<Tuple2<String,Integer>> in = // [...] DataSet<Integer> result = in.partitionByRange(0) .mapPartition(new PartitionMapper());
Custom Partitioning 手动指定数据分区。 注意:此方法仅适用于单个字段键。DataSet<Tuple2<String,Integer>> in = // [...] DataSet<Integer> result = in.partitionCustom(Partitioner<K> partitioner, key)
Sort Partition 本地按指定顺序对指定字段上的数据集的全部分区进行排序。能够将字段指定为元组位置或字段表达式。经过连接sortPartition()调用来完成对多个字段的排序。DataSet<Tuple2<String,Integer>> in = // [...] DataSet<Integer> result = in.sortPartition(1, Order.ASCENDING) .mapPartition(new PartitionMapper());
First-n 返回数据集的前n个(任意)数据元。First-n能够应用于常规数据集,分组数据集或分组排序数据集。分组键能够指定为键选择器函数或字段位置键。DataSet<Tuple2<String,Integer>> in = // [...] // regular data set DataSet<Tuple2<String,Integer>> result1 = in.first(3); // grouped data set DataSet<Tuple2<String,Integer>> result2 = in.groupBy(0) .first(3); // grouped-sorted data set DataSet<Tuple2<String,Integer>> result3 = in.groupBy(0) .sortGroup(1, Order.ASCENDING) .first(3);

数据源

数据源建立初始数据集,例如来自文件或Java集合。建立数据集的通常机制是在InputFormat后面抽象的 。Flink附带了几种内置格式,能够从通用文件格式建立数据集。他们中的许多人在ExecutionEnvironment上都有快捷方法。

基于文件的:

  • readTextFile(path)/ TextInputFormat- 按行读取文件并将其做为字符串返回。
  • readTextFileWithValue(path)/ TextValueInputFormat- 按行读取文件并将它们做为StringValues返回。StringValues是可变字符串。
  • readCsvFile(path)/ CsvInputFormat- 解析逗号(或其余字符)分隔字段的文件。返回元组或POJO的DataSet。支持基本java类型及其Value对应做为字段类型。
  • readFileOfPrimitives(path, Class)/ PrimitiveInputFormat- 解析新行(或其余字符序列)分隔的原始数据类型(如String或)的文件Integer
  • readFileOfPrimitives(path, delimiter, Class)/ PrimitiveInputFormat- 解析新行(或其余字符序列)分隔的原始数据类型的文件,例如StringInteger使用给定的分隔符。
  • readSequenceFile(Key, Value, path)/ SequenceFileInputFormat- 建立一个JobConf并从类型为SequenceFileInputFormat,Key class和Value类的指定路径中读取文件,并将它们做为Tuple2 <Key,Value>返回。

基于集合:

  • fromCollection(Collection) - 从Java Java.util.Collection建立数据集。集合中的全部数据元必须属于同一类型。
  • fromCollection(Iterator, Class) - 从迭代器建立数据集。该类指定迭代器返回的数据元的数据类型。
  • fromElements(T ...) - 根据给定的对象序列建立数据集。全部对象必须属于同一类型。
  • fromParallelCollection(SplittableIterator, Class) - 并行地从迭代器建立数据集。该类指定迭代器返回的数据元的数据类型。
  • generateSequence(from, to) - 并行生成给定间隔中的数字序列。

通用:

  • readFile(inputFormat, path)/ FileInputFormat- 接受文件输入格式。
  • createInput(inputFormat)/ InputFormat- 接受通用输入格式。

例子

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// read text file from local files system
DataSet<String> localLines = env.readTextFile("file:///path/to/my/textfile");

// read text file from a HDFS running at nnHost:nnPort
DataSet<String> hdfsLines = env.readTextFile("hdfs://nnHost:nnPort/path/to/my/textfile");

// read a CSV file with three fields
DataSet<Tuple3<Integer, String, Double>> csvInput = env.readCsvFile("hdfs:///the/CSV/file")
                           .types(Integer.class, String.class, Double.class);

// read a CSV file with five fields, taking only two of them
DataSet<Tuple2<String, Double>> csvInput = env.readCsvFile("hdfs:///the/CSV/file")
                               .includeFields("10010")  // take the first and the fourth field
                           .types(String.class, Double.class);

// read a CSV file with three fields into a POJO (Person.class) with corresponding fields
DataSet<Person>> csvInput = env.readCsvFile("hdfs:///the/CSV/file")
                         .pojoType(Person.class, "name", "age", "zipcode");

// read a file from the specified path of type SequenceFileInputFormat
DataSet<Tuple2<IntWritable, Text>> tuples =
 env.readSequenceFile(IntWritable.class, Text.class, "hdfs://nnHost:nnPort/path/to/file");

// creates a set from some given elements
DataSet<String> value = env.fromElements("Foo", "bar", "foobar", "fubar");

// generate a number sequence
DataSet<Long> numbers = env.generateSequence(1, 10000000);

// Read data from a relational database using the JDBC input format
DataSet<Tuple2<String, Integer> dbData =
    env.createInput(
      JDBCInputFormat.buildJDBCInputFormat()
                     .setDrivername("org.apache.derby.jdbc.EmbeddedDriver")
                     .setDBUrl("jdbc:derby:memory:persons")
                     .setQuery("select name, age from persons")
                     .setRowTypeInfo(new RowTypeInfo(BasicTypeInfo.STRING_TYPE_INFO, BasicTypeInfo.INT_TYPE_INFO))
                     .finish()
    );

// Note: Flink's program compiler needs to infer the data types of the data items which are returned
// by an InputFormat. If this information cannot be automatically inferred, it is necessary to
// manually provide the type information as shown in the examples above.

收集数据源和接收器

经过建立输入文件和读取输出文件来完成分析程序的输入并检查其输出是很麻烦的。Flink具备特殊的数据源和接收器,由Java集合支持以简化测试。一旦程序通过测试,源和接收器能够很容易地被读取/写入外部数据存储(如HDFS)的源和接收器替换。

在开发中,咱们常常直接使用接收器对数据源进行接收。

final ExecutionEnvironment env = ExecutionEnvironment.createLocalEnvironment();

// Create a DataSet from a list of elements
DataSet<Integer> myInts = env.fromElements(1, 2, 3, 4, 5);

// Create a DataSet from any Java collection
List<Tuple2<String, Integer>> data = ...
DataSet<Tuple2<String, Integer>> myTuples = env.fromCollection(data);

// Create a DataSet from an Iterator
Iterator<Long> longIt = ...
DataSet<Long> myLongs = env.fromCollection(longIt, Long.class);

广播变量

除了常规的 算子操做输入以外,广播变量还容许您为 算子操做的全部并行实例提供数据集。这对于辅助数据集或与数据相关的参数化很是有用。而后,算子能够将数据集做为集合访问。

// 1. The DataSet to be broadcast
DataSet<Integer> toBroadcast = env.fromElements(1, 2, 3);

DataSet<String> data = env.fromElements("a", "b");

data.map(new RichMapFunction<String, String>() {
    @Override
    public void open(Configuration parameters) throws Exception {
      // 3. Access the broadcast DataSet as a Collection
      Collection<Integer> broadcastSet = getRuntimeContext().getBroadcastVariable("broadcastSetName");
    }


    @Override
    public String map(String value) throws Exception {
        ...
    }
}).withBroadcastSet(toBroadcast, "broadcastSetName"); // 2. Broadcast the DataSet

分布式缓存

Flink提供了一个分布式缓存,相似于Apache Hadoop,能够在本地访问用户函数的并行实例。此函数可用于共享包含静态外部数据的文件,如字典或机器学习的回归模型。

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

// register a file from HDFS
env.registerCachedFile("hdfs:///path/to/your/file", "hdfsFile")

// register a local executable file (script, executable, ...)
env.registerCachedFile("file:///path/to/exec/file", "localExecFile", true)

// define your program and execute
...
DataSet<String> input = ...
DataSet<Integer> result = input.map(new MyMapper());
...
env.execute();

以上就是DataSet API 的使用,其实和spark很是的类似,咱们将数据接入后,能够利用各类算子对数据进行处理。

Flink Demo代码

Flink系列文章:

Flink入门(一)——Apache Flink介绍
Flink入门(二)——Flink架构介绍

Flink入门(三)——环境与部署

Flink入门(四)——编程模型

更多实时计算,Flink,Kafka等相关技术博文,欢迎关注实时流式计算

file

相关文章
相关标签/搜索