opencv+python 提取国徽轮廓

简单的说,就是最近须要作图像处理相关的项目,以前没关注过这个领域,忽然接触,仍是不少细节思路不明白,中间想了不少临时方案,解决过程,最后探索的结果是用不上,不过也有部分东西能够留下思路做为借鉴。python

图像提取轮廓,庆幸找到用 Python 和 OpenCV 检测图片上的条形码这篇文章,学了一些处理的思路和方法。这个也是整个处理过程的基础。这里简单说一个探索过程,就是提取轮廓,目标国徽。api

opencv版本不同,用到的api仍是有区别的,这里用到的版本是2.4.13ui

截取一张国徽照片,参考上面的文章,先作灰度,模糊,二值化,再作闭运算,以后4次腐蚀,4次膨胀,以后查找轮廓,在原图画一个轮廓,看起来不是很理想。code

def get_guohui2():
    #获取国徽轮廓
    img = cv2.imread("pic/guohui0.jpg")
    
    #灰度
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    #模糊
    blurred = cv2.blur(gray, (9, 9))
    #二值化
    (_, thresh) = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY)
    cv2.imshow("image", thresh)
    cv2.waitKey(0)
    
    #闭运算
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (40, 20))
    close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

    # perform a series of erosions and dilations
    #腐蚀、膨胀
    close = cv2.erode(close, None, iterations = 4)
    close = cv2.dilate(close, None, iterations = 4)
    
    cv2.imshow("image", close)
    cv2.waitKey(0)
    
    #查找轮廓
    (contours, _) = cv2.findContours(close, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
    cv2.drawContours(img, contours, -1, (0, 255, 0), 3)
    
    cv2.imshow("image", img)
    cv2.waitKey(0)

后面改了先开运算再闭运算,再调整一些参数,看起来效果好多了orm

def get_guohui2():
    #获取国徽轮廓
    img = cv2.imread("pic/guohui0.jpg")
    
    #灰度
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    #模糊
    blurred = cv2.blur(gray, (3, 3))
    #二值化
    (_, thresh) = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY)
    cv2.imshow("image", thresh)
    cv2.waitKey(0)
    
    #开运算
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
    open = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)

    # perform a series of erosions and dilations
    #腐蚀、膨胀
    open = cv2.erode(open, None, iterations = 4)
    open = cv2.dilate(open, None, iterations = 4)
    
    cv2.imshow("image", open)
    cv2.waitKey(0)
    
    #闭运算
    close = cv2.morphologyEx(open, cv2.MORPH_CLOSE, kernel)
    cv2.imshow("image", close)
    cv2.waitKey(0)
    
    #查找轮廓
    (contours, _) = cv2.findContours(close, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
    cv2.drawContours(img, contours, -1, (0, 255, 0), 3)
    
    cv2.imshow("image", img)
    cv2.waitKey(0)

可是还有一些缺陷,不够完整,后面想到,多是边缘不够明显,因而找了怎么锐化边缘,找到OpenCV图像处理 空间域图像加强(图像锐化 1 基于拉普拉斯算子)。里面都是C++的代码,参考了一下,用了矩阵,小改就完成了。锐化后没作模糊操做。blog

def get_guohui2():
    #获取国徽轮廓
    img = cv2.imread("pic/guohui0.jpg")
    
    #锐化操做
    kernel = np.matrix('0 -1 0; -1 5 -1; 0 -1 0')
    dst = cv2.filter2D(img,-1,kernel)

    cv2.imshow("Result", dst)
    cv2.waitKey(0)
    
    #灰度
    gray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
    
    #二值化
    (_, thresh) = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    cv2.imshow("image", thresh)
    cv2.waitKey(0)
    
    #开运算
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
    open = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)

    # perform a series of erosions and dilations
    #腐蚀、膨胀
    open = cv2.erode(open, None, iterations = 4)
    open = cv2.dilate(open, None, iterations = 4)
    
    cv2.imshow("image", open)
    cv2.waitKey(0)
    
    #闭运算
    close = cv2.morphologyEx(open, cv2.MORPH_CLOSE, kernel)
    cv2.imshow("image", close)
    cv2.waitKey(0)
    
    #查找轮廓
    (contours, _) = cv2.findContours(close, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    
    area = cv2.contourArea(contours[0])
    print area
    
    cv2.drawContours(img, [contours[1]], -1, (0, 255, 0), 3)
    
    cv2.imshow("image", img)
    cv2.waitKey(0)

完。图片

相关文章
相关标签/搜索