考场上这道题我先是写了个70分暴力,而后发现彷佛能够NTT,然鹅问题是——我没学过NTT,遂脑补之,脑补出来了,下午出成绩一看,卡成暴力分(70)……同是\(O(Qk^2\log k)\),学姐的拉格朗日什么玩意就能过TAT……学姐太强了……优化
遂不忿,今天上午重写NTT,努力卡常,卡不进去……spa
那仍是写正解吧。code
首先,发现血量上限不多,0操做时,暴力维护每一时刻每一个人是每种血量大小的几率便可。get
1操做怎么办呢?设\(alive_i\)是\(i\)号人活着的几率,\(dead_i\)是他死了的几率,\(g_{i,j}\)是除\(i\)之外活了\(j\)我的的几率,\(i\)号人的答案就是\[alive_i * \sum_{j = 0}^{k - 1}\frac{1}{j + 1} * g_{i,j}\]string
可是\(g_{i,j}\)怎么求呢?发现能够DP:设\(f_{i,j}\)表示前\(i\)我的有\(j\)个活着的几率,则\[f_{ij} = f_{i-1,j} * dead_i + f_{i-1,j-1} * alive_i\]it
注意到最后的\(f\)和人的顺序无关,因此能够把人的顺序任意调换,把要求的这个\(i\)放在最后一个,这样\(f_{k - 1}\)就是\(g_{i}\)。io
那么对于每一个\(i\)求一遍\(f\),复杂度是\(O(n^3)\)的,能得70分。class
如何优化呢?考虑把\(i\)号人放在最后时,从\(f_k\)倒推到\(f_{k-1}\):\[\frac{f_{k-1, j} = f_{k, j} - f_{k -1, j - 1} * alive_i}{dead_i}\]stream
注意到\(dead_i = 0\)时该式不能用,又发现此时\(f_{k-1, j} = f_{k, j+1}\),因此也能直接求。
那么\(O(n^2)\)求出\(f_k\),再\(O(n^2)\)倒推,直接能够得到答案!
#include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <iostream> #define space putchar(' ') #define enter putchar('\n') typedef long long ll; using namespace std; template <class T> void read(T &x){ char c; bool op = 0; while(c = getchar(), c < '0' || c > '9') if(c == '-') op = 1; x = c - '0'; while(c = getchar(), c >= '0' && c <= '9') x = x * 10 + c - '0'; if(op) x = -x; } template <class T> void write(T x){ if(x < 0) putchar('-'), x = -x; if(x >= 10) write(x / 10); putchar('0' + x % 10); } const int N = 256, P = 998244353; int n, m, K, t[N], b[N], rate[N][105], iv[N]; ll qpow(ll a, ll x){ ll ret = 1; while(x){ if(x & 1) ret = ret * a % P; a = a * a % P; x >>= 1; } return ret; } void attack(int tar, ll x){ ll y = (1 - x + P) % P; for(int i = 0; i <= b[tar]; i++){ if(i) rate[tar][i] = rate[tar][i] * y % P; if(i < b[tar]) rate[tar][i] = (rate[tar][i] + rate[tar][i + 1] * x) % P; } } void query(){ static ll f[N], g[N], h[N]; memset(f, 0, sizeof(f)); f[0] = 1; for(int i = 1; i <= K; i++) for(int j = i; j >= 0; j--) f[j] = ((j ? f[j - 1] * (1 - rate[t[i]][0]) : 0) + f[j] * rate[t[i]][0]) % P; for(int i = 1; i <= K; i++){ h[i] = 0; if(!rate[t[i]][0]) for(int j = 0; j < K; j++) h[i] += f[j + 1] * iv[j + 1] % P; else{ int inv = qpow(rate[t[i]][0], P - 2); for(int j = 0; j < K; j++){ g[j] = (f[j] - (j ? g[j - 1] * (1 - rate[t[i]][0]) : 0)) % P * inv % P; h[i] += iv[j + 1] * g[j] % P; } } h[i] %= P; h[i] = h[i] * (1 - rate[t[i]][0]) % P; if(h[i] < 0) h[i] += P; } for(int i = 1; i <= K; i++) write(h[i]), i == K ? enter: space; } int main(){ read(n); for(int i = 1; i <= n; i++) read(b[i]), rate[i][b[i]] = 1, iv[i] = qpow(i, P - 2); read(m); int op, x, u, v; while(m--){ read(op); if(op == 0) read(x), read(u), read(v), attack(x, u * qpow(v, P - 2) % P); else{ read(K); for(int i = 1; i <= K; i++) read(t[i]); query(); } } for(int i = 1; i <= n; i++){ ll sum = 0; for(int j = 1; j <= b[i]; j++) sum += (ll)j * rate[i][j] % P; write(sum % P), i == n ? enter: space; } return 0; }