封装,继承,多态和抽象html
1. 封装前端
封装给对象提供了隐藏内部特性和行为的能力。对象提供一些能被其余对象访问的方法来改
变它内部的数据。在 Java 当中,有 3 种修饰符: public, private 和 protected。每一种修饰符
给其余的位于同一个包或者不一样包下面对象赋予了不一样的访问权限。
下面列出了使用封装的一些好处:java
2. 继承mysql
继承给对象提供了从基类获取字段和方法的能力。继承提供了代码的重用行,也能够在不修改类的状况下给现存的类添加新特性。git
3. 多态程序员
多态是编程语言给不一样的底层数据类型作相同的接口展现的一种能力。一个多态类型上的操做能够应用到其余类型的值上面。github
4. 抽象redis
抽象是把想法从具体的实例中分离出来的步骤,所以,要根据他们的功能而不是实现细节来建立类。 Java 支持建立只暴漏接口而不包含方法实现的抽象的类。这种抽象技术的主要目的是把类的行为和实现细节分离开。算法
1. finalspring
修饰符(关键字)若是一个类被声明为final,意味着它不能再派生出新的子类,不能做为父类被继承。所以一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,能够保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在之后的引用中只能读取,不可修改。被声明为final的方法也一样只能使用,不能重载。
2. finally
在异常处理时提供 finally 块来执行任何清除操做。若是抛出一个异常,那么相匹配的 catch 子句就会执行,而后控制就会进入 finally 块(若是有的话)。
3. finalize
方法名。Java 技术容许使用 finalize() 方法在垃圾收集器将对象从内存中清除出去以前作必要的清理工做。这个方法是由垃圾收集器在肯定这个对象没有被引用时对这个对象调用的。它是在 Object 类中定义的,所以全部的类都继承了它。子类覆盖 finalize() 方法以整理系统资源或者执行其余清理工做。finalize() 方法是在垃圾收集器删除对象以前对这个对象调用的。
int 是基本数据类型
Integer是其包装类,注意是一个类。
为何要提供包装类呢???
一是为了在各类类型间转化,经过各类方法的调用。不然 你没法直接经过变量转化。
好比,如今int要转为String
int a=0; String result=Integer.toString(a);
在java中包装类,比较多的用途是用在于各类数据类型的转化中。
我写几个demo
//经过包装类来实现转化的
int num=Integer.valueOf("12"); int num2=Integer.parseInt("12"); double num3=Double.valueOf("12.2"); double num4=Double.parseDouble("12.2"); //其余的相似。经过基本数据类型的包装来的valueOf和parseXX来实现String转为XX String a=String.valueOf("1234");//这里括号中几乎能够是任何类型 String b=String.valueOf(true); String c=new Integer(12).toString();//经过包装类的toString()也能够 String d=new Double(2.3).toString();
再举例下。好比我如今要用泛型
List<Integer> nums;
这里<>须要类。若是你用int。它会报错的。
重载和重写的区别
override(重写)
1. 方法名、参数、返回值相同。
2. 子类方法不能缩小父类方法的访问权限。
3. 子类方法不能抛出比父类方法更多的异常(但子类方法能够不抛出异常)。
4. 存在于父类和子类之间。
5. 方法被定义为final不能被重写。
overload(重载)
1. 参数类型、个数、顺序至少有一个不相同。
2. 不能重载只有返回值不一样的方法名。
3. 存在于父类和子类、同类中。
接口是公开的,里面不能有私有的方法或变量,是用于让别人使用的,而抽象类是能够有私有方法或私有变量的,
另外,实现接口的必定要实现接口里定义的全部方法,而实现抽象类能够有选择地重写须要用到的方法,通常的应用里,最顶级的是接口,而后是抽象类实现接口,最后才到具体类实现。
还有,接口能够实现多重继承,而一个类只能继承一个超类,但能够经过继承多个接口实现多重继承,接口还有标识(里面没有任何方法,如Remote接口)和数据共享(里面的变量全是常量)的做用。
Java反射机制主要提供了如下功能:在运行时构造一个类的对象;判断一个类所具备的成员变量和方法;调用一个对象的方法;生成动态代理。反射最大的应用就是框架
Java反射的主要功能:
反射的应用不少,不少框架都有用到
spring 的 ioc/di 也是反射….
javaBean和jsp之间调用也是反射….
struts的 FormBean 和页面之间…也是经过反射调用….
JDBC 的 classForName()也是反射…..
hibernate的 find(Class clazz) 也是反射….
反射还有一个不得不说的问题,就是性能问题,大量使用反射系统性能大打折扣。怎么使用使你的系统达到最优就看你系统架构和综合使用问题啦,这里就很少说了。
来源:http://uule.iteye.com/blog/1423512
(此题自由发挥,就看你对注解的理解了!==)登录、权限拦截、日志处理,以及各类Java框架,如Spring,Hibernate,JUnit 提到注解就不能不说反射,Java自定义注解是经过运行时靠反射获取注解。实际开发中,例如咱们要获取某个方法的调用日志,能够经过AOP(动态代理机制)给方法添加切面,经过反射来获取方法包含的注解,若是包含日志注解,就进行日志记录。
GET方法会把名值对追加在请求的URL后面。由于URL对字符数目有限制,进而限制了用在客户端请求的参数值的数目。而且请求中的参数值是可见的,所以,敏感信息不能用这种方式传递。
POST方法经过把请求参数值放在请求体中来克服GET方法的限制,所以,能够发送的参数的数目是没有限制的。最后,经过POST请求传递的敏感信息对外部客户端是不可见的。
参考:https://www.cnblogs.com/wangli-66/p/5453507.html
cookie 是 Web 服务器发送给浏览器的一块信息。浏览器会在本地文件中给每个 Web 服务
器存储 cookie。之后浏览器在给特定的 Web 服务器发请求的时候,同时会发送全部为该服
务器存储的 cookie。下面列出了 session 和 cookie 的区别:
不管客户端浏览器作怎么样的设置,session都应该能正常工做。客户端能够选择禁用 cookie,
可是, session 仍然是可以工做的,由于客户端没法禁用服务端的 session。
一、 加载JDBC驱动程序:
在链接数据库以前,首先要加载想要链接的数据库的驱动到JVM(Java虚拟机),
这经过java.lang.Class类的静态方法forName(String className)实现。
例如:
try{ //加载MySql的驱动类 Class.forName("com.mysql.jdbc.Driver") ; }catch(ClassNotFoundException e){ System.out.println("找不到驱动程序类 ,加载驱动失败!"); e.printStackTrace() ; }
成功加载后,会将Driver类的实例注册到DriverManager类中。
二、 提供JDBC链接的URL
协议:在JDBC中老是以jdbc开始 子协议:是桥链接的驱动程序或是数据库管理系统名称。
数据源标识:标记找到数据库来源的地址与链接端口。
例如:
jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=gbk;useUnicode=true;(MySql的链接URL)
表示使用Unicode字符集。若是characterEncoding设置为 gb2312或GBK,本参数必须设置为true 。characterEncoding=gbk:字符编码方式。
三、建立数据库的链接
例如: //链接MySql数据库,用户名和密码都是root
String url = "jdbc:mysql://localhost:3306/test" ; String username = "root" ; String password = "root" ; try{ Connection con = DriverManager.getConnection(url , username , password ) ; }catch(SQLException se){ System.out.println("数据库链接失败!"); se.printStackTrace() ; }
四、 建立一个Statement
•要执行SQL语句,必须得到java.sql.Statement实例,Statement实例分为如下3 种类型:
一、执行静态SQL语句。一般经过Statement实例实现。
二、执行动态SQL语句。一般经过PreparedStatement实例实现。
三、执行数据库存储过程。一般经过CallableStatement实例实现。
具体的实现方式:
Statement stmt = con.createStatement() ; PreparedStatement pstmt = con.prepareStatement(sql) ; CallableStatement cstmt = con.prepareCall(“{CALL demoSp(? , ?)}”) ;
五、执行SQL语句
Statement接口提供了三种执行SQL语句的方法:executeQuery 、executeUpdate 和execute
一、ResultSet executeQuery(String sqlString):执行查询数据库的SQL语句 ,返回一个结果集(ResultSet)对象。
二、int executeUpdate(String sqlString):用于执行INSERT、UPDATE或 DELETE语句以及SQL DDL语句,如:CREATE TABLE和DROP TABLE等
三、execute(sqlString):用于执行返回多个结果集、多个更新计数或两者组合的 语句。 具体实现的代码:
ResultSet rs = stmt.executeQuery(“SELECT * FROM …”) ; int rows = stmt.executeUpdate(“INSERT INTO …”) ; boolean flag = stmt.execute(String sql) ;
六、处理结果
两种状况:
一、执行更新返回的是本次操做影响到的记录数。
二、执行查询返回的结果是一个ResultSet对象。
• ResultSet包含符合SQL语句中条件的全部行,而且它经过一套get方法提供了对这些 行中数据的访问。
• 使用结果集(ResultSet)对象的访问方法获取数据:
while(rs.next()){
String name = rs.getString(“name”) ;
String pass = rs.getString(1) ; // 此方法比较高效
}
(列是从左到右编号的,而且从列1开始)
七、关闭JDBC对象
操做完成之后要把全部使用的JDBC对象全都关闭,以释放JDBC资源,关闭顺序和声 明顺序相反:
一、关闭记录集
二、关闭声明
三、关闭链接对象
if(rs != null){ // 关闭记录集 try{ rs.close() ; }catch(SQLException e){ e.printStackTrace() ; } } if(stmt != null){ // 关闭声明 try{ stmt.close() ; }catch(SQLException e){ e.printStackTrace() ; } } if(conn != null){ // 关闭链接对象 try{ conn.close() ; }catch(SQLException e){ e.printStackTrace() ; } }
MVC就是
M:Model 模型
V:View 视图
C:Controller 控制器
模型就是封装业务逻辑和数据的一个一个的模块,控制器就是调用这些模块的(java中一般是用Servlet来实现,框架的话不少是用Struts2来实现这一层),视图就主要是你看到的,好比JSP等.
当用户发出请求的时候,控制器根据请求来选择要处理的业务逻辑和要选择的数据,再返回去把结果输出到视图层,这里多是进行重定向或转发等.
值类型(int,char,long,boolean等)都是用==判断相等性。对象引用的话,==判断引用所指的对象是不是同一个。equals是Object的成员函数,有些类会覆盖(override)这个方法,用于判断对象的等价性。例如String类,两个引用所指向的String都是”abc”,但可能出现他们实际对应的对象并非同一个(和jvm实现方式有关),所以用==判断他们可能不相等,但用equals判断必定是相等的。
List,Set都是继承自Collection接口
List特色:元素有放入顺序,元素可重复
Set特色:元素无放入顺序,元素不可重复,重复元素会覆盖掉
(注意:元素虽然无放入顺序,可是元素在set中的位置是有该元素的HashCode决定的,其位置实际上是固定的,加入Set 的Object必须定义equals()方法 ,另外list支持for循环,也就是经过下标来遍历,也能够用迭代器,可是set只能用迭代,由于他无序,没法用下标来取得想要的值。)
Set和List对比:
Set:检索元素效率低下,删除和插入效率高,插入和删除不会引发元素位置改变。
List:和数组相似,List能够动态增加,查找元素效率高,插入删除元素效率低,由于会引发其余元素位置改变。
List是对象集合,容许对象重复。
Map是键值对的集合,不容许key重复。
Arraylist:
优势:ArrayList是实现了基于动态数组的数据结构,由于地址连续,一旦数据存储好了,查询操做效率会比较高(在内存里是连着放的)。
缺点:由于地址连续, ArrayList要移动数据,因此插入和删除操做效率比较低。
LinkedList:
优势:LinkedList基于链表的数据结构,地址是任意的,因此在开辟内存空间的时候不须要等一个连续的地址,对于新增和删除操做add和remove,LinedList比较占优点。LinkedList 适用于要头尾操做或插入指定位置的场景
缺点:由于LinkedList要移动指针,因此查询操做性能比较低。
适用场景分析:
当须要对数据进行对此访问的状况下选用ArrayList,当须要对数据进行屡次增长删除修改时采用LinkedList。
public ArrayList(int initialCapacity)//构造一个具备指定初始容量的空列表。 public ArrayList()//构造一个初始容量为10的空列表。 public ArrayList(Collection<? extends E> c)//构造一个包含指定 collection 的元素的列表
Vector有四个构造方法:
public Vector()//使用指定的初始容量和等于零的容量增量构造一个空向量。 public Vector(int initialCapacity)//构造一个空向量,使其内部数据数组的大小,其标准容量增量为零。 public Vector(Collection<? extends E> c)//构造一个包含指定 collection 中的元素的向量 public Vector(int initialCapacity,int capacityIncrement)//使用指定的初始容量和容量增量构造一个空的向量
ArrayList和Vector都是用数组实现的,主要有这么三个区别:
Vector是多线程安全的,线程安全就是说多线程访问同一代码,不会产生不肯定的结果。而ArrayList不是,这个能够从源码中看出,Vector类中的方法不少有synchronized进行修饰,这样就致使了Vector在效率上没法与ArrayList相比;
两个都是采用的线性连续空间存储元素,可是当空间不足的时候,两个类的增长方式是不一样。
Vector能够设置增加因子,而ArrayList不能够。
Vector是一种老的动态数组,是线程同步的,效率很低,通常不同意使用。
适用场景分析:
Vector是线程同步的,因此它也是线程安全的,而ArrayList是线程异步的,是不安全的。若是不考虑到线程的安全因素,通常用ArrayList效率比较高。
若是集合中的元素的数目大于目前集合数组的长度时,在集合中使用数据量比较大的数据,用Vector有必定的优点。
1.hashMap去掉了HashTable 的contains方法,可是加上了containsValue()和containsKey()方法。
2.hashTable同步的,而HashMap是非同步的,效率上逼hashTable要高。
3.hashMap容许空键值,而hashTable不容许。
注意:
TreeMap:非线程安全基于红黑树实现。TreeMap没有调优选项,由于该树总处于平衡状态。
Treemap:适用于按天然顺序或自定义顺序遍历键(key)。
参考:http://blog.csdn.net/qq_22118507/article/details/51576319
set是线性结构,set中的值不能重复,hashset是set的hash实现,hashset中值不能重复是用hashmap的key来实现的。
map是键值对映射,能够空键空值。HashMap是Map接口的hash实现,key的惟一性是经过key值hash值的惟一来肯定,value值是则是链表结构。
他们的共同点都是hash算法实现的惟一性,他们都不能持有基本类型,只能持有对象
ConcurrentHashMap是线程安全的HashMap的实现。
(1)ConcurrentHashMap对整个桶数组进行了分割分段(Segment),而后在每个分段上都用lock锁进行保护,相对于HashTable的syn关键字锁的粒度更精细了一些,并发性能更好,而HashMap没有锁机制,不是线程安全的。
(2)HashMap的键值对容许有null,可是ConCurrentHashMap都不容许。
参考:https://tracylihui.github.io/2015/07/01/Java集合学习1:HashMap的实现原理/
HashTable里使用的是synchronized关键字,这实际上是对对象加锁,锁住的都是对象总体,当Hashtable的大小增长到必定的时候,性能会急剧降低,由于迭代时须要被锁定很长的时间。
ConcurrentHashMap算是对上述问题的优化,其构造函数以下,默认传入的是16,0.75,16。
public ConcurrentHashMap(int paramInt1, float paramFloat, int paramInt2) { //… int i = 0; int j = 1; while (j < paramInt2) { ++i; j <<= 1; } this.segmentShift = (32 - i); this.segmentMask = (j - 1); this.segments = Segment.newArray(j); //… int k = paramInt1 / j; if (k * j < paramInt1) ++k; int l = 1; while (l < k) l <<= 1; for (int i1 = 0; i1 < this.segments.length; ++i1) this.segments[i1] = new Segment(l, paramFloat); } public V put(K paramK, V paramV) { if (paramV == null) throw new NullPointerException(); int i = hash(paramK.hashCode()); //这里的hash函数和HashMap中的不同 return this.segments[(i >>> this.segmentShift & this.segmentMask)].put(paramK, i, paramV, false); }
ConcurrentHashMap引入了分割(Segment),上面代码中的最后一行其实就能够理解为把一个大的Map拆分红N个小的HashTable,在put方法中,会根据hash(paramK.hashCode())来决定具体存放进哪一个Segment,若是查看Segment的put操做,咱们会发现内部使用的同步机制是基于lock操做的,这样就能够对Map的一部分(Segment)进行上锁,这样影响的只是将要放入同一个Segment的元素的put操做,保证同步的时候,锁住的不是整个Map(HashTable就是这么作的),相对于HashTable提升了多线程环境下的性能,所以HashTable已经被淘汰了。
Java中建立线程主要有三种方式:
1、继承Thread类建立线程类
(1)定义Thread类的子类,并重写该类的run方法,该run方法的方法体就表明了线程要完成的任务。所以把run()方法称为执行体。
(2)建立Thread子类的实例,即建立了线程对象。
(3)调用线程对象的start()方法来启动该线程。
package com.thread; public class FirstThreadTest extends Thread{ int i = 0; //重写run方法,run方法的方法体就是现场执行体 public void run() { for(;i<100;i++){ System.out.println(getName()+" "+i); } } public static void main(String[] args) { for(int i = 0;i< 100;i++) { System.out.println(Thread.currentThread().getName()+" : "+i); if(i==20) { new FirstThreadTest().start(); new FirstThreadTest().start(); } } } }
上述代码中Thread.currentThread()方法返回当前正在执行的线程对象。getName()方法返回调用该方法的线程的名字。
2、经过Runnable接口建立线程类
(1)定义runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体一样是该线程的线程执行体。
(2)建立 Runnable实现类的实例,并依此实例做为Thread的target来建立Thread对象,该Thread对象才是真正的线程对象。
(3)调用线程对象的start()方法来启动该线程。
package com.thread; public class RunnableThreadTest implements Runnable { private int i; public void run() { for(i = 0;i <100;i++) { System.out.println(Thread.currentThread().getName()+" "+i); } } public static void main(String[] args) { for(int i = 0;i < 100;i++) { System.out.println(Thread.currentThread().getName()+" "+i); if(i==20) { RunnableThreadTest rtt = new RunnableThreadTest(); new Thread(rtt,"新线程1").start(); new Thread(rtt,"新线程2").start(); } } } }
3、经过Callable和Future建立线程
(1)建立Callable接口的实现类,并实现call()方法,该call()方法将做为线程执行体,而且有返回值。
(2)建立Callable实现类的实例,使用FutureTask类来包装Callable对象,该FutureTask对象封装了该Callable对象的call()方法的返回值。
(3)使用FutureTask对象做为Thread对象的target建立并启动新线程。
(4)调用FutureTask对象的get()方法来得到子线程执行结束后的返回值
package com.thread; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.FutureTask; public class CallableThreadTest implements Callable<Integer> { public static void main(String[] args) { CallableThreadTest ctt = new CallableThreadTest(); FutureTask<Integer> ft = new FutureTask<>(ctt); for(int i = 0;i < 100;i++) { System.out.println(Thread.currentThread().getName()+" 的循环变量i的值"+i); if(i==20) { new Thread(ft,"有返回值的线程").start(); } } try { System.out.println("子线程的返回值:"+ft.get()); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } @Override public Integer call() throws Exception { int i = 0; for(;i<100;i++) { System.out.println(Thread.currentThread().getName()+" "+i); } return i; } }
建立线程的三种方式的对比
采用实现Runnable、Callable接口的方式创见多线程时,优点是:
线程类只是实现了Runnable接口或Callable接口,还能够继承其余类。
在这种方式下,多个线程能够共享同一个target对象,因此很是适合多个相同线程来处理同一份资源的状况,从而能够将CPU、代码和数据分开,造成清晰的模型,较好地体现了面向对象的思想。
劣势是:
编程稍微复杂,若是要访问当前线程,则必须使用Thread.currentThread()方法。
使用继承Thread类的方式建立多线程时优点是:
编写简单,若是须要访问当前线程,则无需使用Thread.currentThread()方法,直接使用this便可得到当前线程。
劣势是:
线程类已经继承了Thread类,因此不能再继承其余父类。
一、sleep()方法
在指定的毫秒数内让当前正在执行的线程休眠(暂停执行),此操做受到系统计时器和调度程序精度和准确性的影响。 让其余线程有机会继续执行,但它并不释放对象锁。也就是若是有Synchronized同步块,其余线程仍然不能访问共享数据。注意该方法要捕获异常
好比有两个线程同时执行(没有Synchronized),一个线程优先级为MAX_PRIORITY,另外一个为MIN_PRIORITY,若是没有Sleep()方法,只有高优先级的线程执行完成后,低优先级的线程才能执行;但当高优先级的线程sleep(5000)后,低优先级就有机会执行了。
总之,sleep()能够使低优先级的线程获得执行的机会,固然也可让同优先级、高优先级的线程有执行的机会。
二、yield()方法
yield()方法和sleep()方法相似,也不会释放“锁标志”,区别在于,它没有参数,即yield()方法只是使当前线程从新回到可执行状态,因此执行yield()的线程有可能在进入到可执行状态后立刻又被执行,另外yield()方法只能使同优先级或者高优先级的线程获得执行机会,这也和sleep()方法不一样。
三、join()方法
Thread的非静态方法join()让一个线程B“加入”到另一个线程A的尾部。在A执行完毕以前,B不能工做。
Thread t = new MyThread(); t.start(); t.join();
保证当前线程中止执行,直到该线程所加入的线程完成为止。然而,若是它加入的线程没有存活,则当前线程不须要中止。
参考:
Java并发编程:CountDownLatch、CyclicBarrier和Semaphore
参考:
java.util.concurrent.Exchanger应用范例与原理浅析
尽可能把CyclicBarrier和CountDownLatch的区别说通俗点
主要是ThreadPoolExecutor的实现原理
newFixedThreadPool(int nThreads)
建立一个固定长度的线程池,每当提交一个任务就建立一个线程,直到达到线程池的最大数量,这时线程规模将再也不变化,当线程发生未预期的错误而结束时,线程池会补充一个新的线程
newCachedThreadPool()
建立一个可缓存的线程池,若是线程池的规模超过了处理需求,将自动回收空闲线程,而当需求增长时,则能够自动添加新线程,线程池的规模不存在任何限制
newSingleThreadExecutor()
这是一个单线程的Executor,它建立单个工做线程来执行任务,若是这个线程异常结束,会建立一个新的来替代它;它的特色是能确保依照任务在队列中的顺序来串行执行
newScheduledThreadPool(int corePoolSize)
建立了一个固定长度的线程池,并且以延迟或定时的方式来执行任务,相似于Timer。
举个栗子
private static final Executor exec=Executors.newFixedThreadPool(50); Runnable runnable=new Runnable(){ public void run(){ ... } } exec.execute(runnable); Callable<Object> callable=new Callable<Object>() { public Object call() throws Exception { return null; } }; Future future=executorService.submit(callable); future.get(); // 等待计算完成后,获取结果 future.isDone(); // 若是任务已完成,则返回 true future.isCancelled(); // 若是在任务正常完成前将其取消,则返回 true future.cancel(true); // 试图取消对此任务的执行,true中断运行的任务,false容许正在运行的任务运行完成
参考:
新建(New)、就绪(Runnable)、运行(Running)、阻塞(Blocked)和死亡(Dead)5种状态
(1)生命周期的五种状态
新建(new Thread)
当建立Thread类的一个实例(对象)时,此线程进入新建状态(未被启动)。
例如:Thread t1=new Thread();
就绪(runnable)
线程已经被启动,正在等待被分配给CPU时间片,也就是说此时线程正在就绪队列中排队等候获得CPU资源。例如:t1.start();
运行(running)
线程得到CPU资源正在执行任务(run()方法),此时除非此线程自动放弃CPU资源或者有优先级更高的线程进入,线程将一直运行到结束。
死亡(dead)
当线程执行完毕或被其它线程杀死,线程就进入死亡状态,这时线程不可能再进入就绪状态等待执行。
天然终止:正常运行run()方法后终止
异常终止:调用stop()方法让一个线程终止运行
堵塞(blocked)
因为某种缘由致使正在运行的线程让出CPU并暂停本身的执行,即进入堵塞状态。
正在睡眠:用sleep(long t) 方法可以使线程进入睡眠方式。一个睡眠着的线程在指定的时间过去可进入就绪状态。
正在等待:调用wait()方法。(调用motify()方法回到就绪状态)
被另外一个线程所阻塞:调用suspend()方法。(调用resume()方法恢复)
参考:
线程安全是指要控制多个线程对某个资源的有序访问或修改,而在这些线程之间没有产生冲突。
在Java里,线程安全通常体如今两个方面:
一、多个thread对同一个java实例的访问(read和modify)不会相互干扰,它主要体如今关键字synchronized。如ArrayList和Vector,HashMap和Hashtable(后者每一个方法前都有synchronized关键字)。若是你在interator一个List对象时,其它线程remove一个element,问题就出现了。
二、每一个线程都有本身的字段,而不会在多个线程之间共享。它主要体如今java.lang.ThreadLocal类,而没有Java关键字支持,如像static、transient那样。
乐观锁 悲观锁
是一种思想。能够用在不少方面。
好比数据库方面。
悲观锁就是for update(锁定查询的行)
乐观锁就是 version字段(比较跟上一次的版本号,若是同样则更新,若是失败则要重复读-比较-写的操做。)
JDK方面:
悲观锁就是sync
乐观锁就是原子类(内部使用CAS实现)
本质来讲,就是悲观锁认为总会有人抢个人。
乐观锁就认为,基本没人抢。
乐观锁是一种思想,即认为读多写少,遇到并发写的可能性比较低,因此采起在写时先读出当前版本号,而后加锁操做(比较跟上一次的版本号,若是同样则更新),若是失败则要重复读-比较-写的操做。
CAS是一种更新的原子操做,比较当前值跟传入值是否同样,同样则更新,不然失败。
CAS顶多算是乐观锁写那一步操做的一种实现方式罢了,不用CAS本身加锁也是能够的。
ABA:若是另外一个线程修改V值假设原来是A,先修改为B,再修改回成A,当前线程的CAS操做没法分辨当前V值是否发生过变化。
参考:
乐观锁(Optimistic Lock):
每次获取数据的时候,都不会担忧数据被修改,因此每次获取数据的时候都不会进行加锁,可是在更新数据的时候须要判断该数据是否被别人修改过。若是数据被其余线程修改,则不进行数据更新,若是数据没有被其余线程修改,则进行数据更新。因为数据没有进行加锁,期间该数据能够被其余线程进行读写操做。
乐观锁:比较适合读取操做比较频繁的场景,若是出现大量的写入操做,数据发生冲突的可能性就会增大,为了保证数据的一致性,应用层须要不断的从新获取数据,这样会增长大量的查询操做,下降了系统的吞吐量。
参考:
参考:
服务端指南 数据存储篇 | MySQL(09) 分库与分表带来的分布式困境与应对之策
参考:
1)InnoDB支持事务,MyISAM不支持,这一点是很是之重要。事务是一种高级的处理方式,如在一些列增删改中只要哪一个出错还能够回滚还原,而MyISAM就不能够了。
2)MyISAM适合查询以及插入为主的应用,InnoDB适合频繁修改以及涉及到安全性较高的应用
3)InnoDB支持外键,MyISAM不支持
4)从MySQL5.5.5之后,InnoDB是默认引擎
5)InnoDB不支持FULLTEXT类型的索引
6)InnoDB中不保存表的行数,如select count() from table时,InnoDB须要扫描一遍整个表来计算有多少行,可是MyISAM只要简单的读出保存好的行数便可。注意的是,当count()语句包含where条件时MyISAM也须要扫描整个表
7)对于自增加的字段,InnoDB中必须包含只有该字段的索引,可是在MyISAM表中能够和其余字段一块儿创建联合索引
8)清空整个表时,InnoDB是一行一行的删除,效率很是慢。MyISAM则会重建表
9)InnoDB支持行锁(某些状况下仍是锁整表,如 update table set a=1 where user like ‘%lee%’
参考:
参考:
http://blog.csdn.net/suifeng3051/article/details/52669644
鉴于B-tree具备良好的定位特性,其常被用于对检索时间要求苛刻的场合,例如:
一、B-tree索引是数据库中存取和查找文件(称为记录或键值)的一种方法。
二、硬盘中的结点也是B-tree结构的。与内存相比,硬盘必须花成倍的时间来存取一个数据元素,这是由于硬盘的机械部件读写数据的速度远远赶不上纯电子媒体的内存。与一个结点两个分支的二元树相比,B-tree利用多个分支(称为子树)的结点,减小获取记录时所经历的结点数,从而达到节省存取时间的目的。
参考:
LIMIT n 等价于 LIMIT 0,n
此题总结一下就是让limit走索引去查询,例如:order by 索引字段
,或者limit前面根where条件走索引字段等等。
参考:
参考:
MySQL 是一个最流行的关系型数据库,在互联网产品中应用比较普遍。通常状况下,MySQL 数据库是选择的第一方案,基本上有 80% ~ 90% 的场景都是基于 MySQL 数据库的。由于,须要关系型数据库进行管理,此外,业务存在许多事务性的操做,须要保证事务的强一致性。同时,可能还存在一些复杂的 SQL 的查询。值得注意的是,前期尽可能减小表的联合查询,便于后期数据量增大的状况下,作数据库的分库分表。
随着数据量的增加,MySQL 已经知足不了大型互联网类应用的需求。所以,Redis 基于内存存储数据,能够极大的提升查询性能,对产品在架构上很好的补充。例如,为了提升服务端接口的访问速度,尽量将读频率高的热点数据存放在 Redis 中。这个是很是典型的以空间换时间的策略,使用更多的内存换取 CPU 资源,经过增长系统的内存消耗,来加快程序的运行速度。
在某些场景下,能够充分的利用 Redis 的特性,大大提升效率。这些场景包括缓存,会话缓存,时效性,访问频率,计数器,社交列表,记录用户断定信息,交集、并集和差集,热门列表与排行榜,最新动态等。
使用 Redis 作缓存的时候,须要考虑数据不一致与脏读、缓存更新机制、缓存可用性、缓存服务降级、缓存穿透、缓存预热等缓存使用问题。
MongoDB 是对传统关系型数据库的补充,它很是适合高伸缩性的场景,它是可扩展性的表结构。基于这点,能够将预期范围内,表结构可能会不断扩展的 MySQL 表结构,经过 MongoDB 来存储,这就能够保证表结构的扩展性。
此外,日志系统数据量特别大,若是用 MongoDB 数据库存储这些数据,利用分片集群支持海量数据,同时使用汇集分析和 MapReduce 的能力,是个很好的选择。
MongoDB 还适合存储大尺寸的数据,GridFS 存储方案就是基于 MongoDB 的分布式文件存储系统。
HBase 适合海量数据的存储与高性能实时查询,它是运行于 HDFS 文件系统之上,而且做为 MapReduce 分布式处理的目标数据库,以支撑离线分析型应用。在数据仓库、数据集市、商业智能等领域发挥了愈来愈多的做用,在数以千计的企业中支撑着大量的大数据分析场景的应用。
在通常状况下,关系型数据库的模糊查询,都是经过 like 的方式进行查询。其中,like “value%” 能够使用索引,可是对于 like “%value%” 这样的方式,执行全表查询,这在数据量小的表,不存在性能问题,可是对于海量数据,全表扫描是很是可怕的事情。ElasticSearch 做为一个创建在全文搜索引擎 Apache Lucene 基础上的实时的分布式搜索和分析引擎,适用于处理实时搜索应用场景。此外,使用 ElasticSearch 全文搜索引擎,还能够支持多词条查询、匹配度与权重、自动联想、拼写纠错等高级功能。所以,能够使用 ElasticSearch 做为关系型数据库全文搜索的功能补充,将要进行全文搜索的数据缓存一份到 ElasticSearch 上,达处处理复杂的业务与提升查询速度的目的。
ElasticSearch 不只仅适用于搜索场景,还很是适合日志处理与分析的场景。著名的 ELK 日志处理方案,由 ElasticSearch、Logstash 和 Kibana 三个组件组成,包括了日志收集、聚合、多维度查询、可视化显示等。
参考:
参考:
参考:
在通常状况下,关系型数据库的模糊查询,都是经过 like 的方式进行查询。其中,like “value%” 能够使用索引,可是对于 like “%value%” 这样的方式,执行全表查询,这在数据量小的表,不存在性能问题,可是对于海量数据,全表扫描是很是可怕的事情。ElasticSearch 做为一个创建在全文搜索引擎 Apache Lucene 基础上的实时的分布式搜索和分析引擎,适用于处理实时搜索应用场景。此外,使用 ElasticSearch 全文搜索引擎,还能够支持多词条查询、匹配度与权重、自动联想、拼写纠错等高级功能。所以,能够使用 ElasticSearch 做为关系型数据库全文搜索的功能补充,将要进行全文搜索的数据缓存一份到 ElasticSearch 上,达处处理复杂的业务与提升查询速度的目的。
Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合)。
参考:
Redis 数据类型
参考:
随着数据量的增加,MySQL 已经知足不了大型互联网类应用的需求。所以,Redis 基于内存存储数据,能够极大的提升查询性能,对产品在架构上很好的补充。例如,为了提升服务端接口的访问速度,尽量将读频率高的热点数据存放在 Redis 中。这个是很是典型的以空间换时间的策略,使用更多的内存换取 CPU 资源,经过增长系统的内存消耗,来加快程序的运行速度。
在某些场景下,能够充分的利用 Redis 的特性,大大提升效率。这些场景包括缓存,会话缓存,时效性,访问频率,计数器,社交列表,记录用户断定信息,交集、并集和差集,热门列表与排行榜,最新动态等。
使用 Redis 作缓存的时候,须要考虑数据不一致与脏读、缓存更新机制、缓存可用性、缓存服务降级、缓存穿透、缓存预热等缓存使用问题。
参考:
参考:
参考:
单纯的网络IO来讲,量大到必定程度以后,多线程的确有优点——但并非单纯的多线程,而是每一个线程本身有本身的epoll这样的模型,也就是多线程和multiplexing混合。
通常这个开头咱们都会跟一个“可是”。
可是。
还要考虑Redis操做的对象。它操做的对象是内存中的数据结构。若是在多线程中操做,那就须要为这些对象加锁。最终来讲,多线程性能有提升,可是每一个线程的效率严重降低了。并且程序的逻辑严重复杂化。
要知道Redis的数据结构并不全是简单的Key-Value,还有列表,hash,map等等复杂的结构,这些结构有可能会进行很细粒度的操做,好比在很长的列表后面添加一个元素,在hash当中添加或者删除一个对象,等等。这些操做还能够合成MULTI/EXEC的组。这样一个操做中可能就须要加很是多的锁,致使的结果是同步开销大大增长。这还带来一个恶果就是吞吐量虽然增大,可是响应延迟可能会增长。
Redis在权衡以后的选择是用单线程,突出本身功能的灵活性。在单线程基础上任何原子操做均可以几乎无代价地实现,多么复杂的数据结构均可以轻松运用,甚至能够使用Lua脚本这样的功能。对于多线程来讲这须要高得多的代价。
并非全部的KV数据库或者内存数据库都应该用单线程,好比ZooKeeper就是多线程的,最终仍是看做者本身的意愿和取舍。单线程的威力实际上很是强大,每核心效率也很是高,在今天的虚拟化环境当中能够充分利用云化环境来提升资源利用率。多线程天然是能够比单线程有更高的性能上限,可是在今天的计算环境中,即便是单机多线程的上限也每每不能知足须要了,须要进一步摸索的是多服务器集群化的方案,这些方案中多线程的技术照样是用不上的,因此单线程、多进程的集群不失为一个时髦的解决方案。
做者:灵剑
连接:https://www.zhihu.com/question/23162208/answer/142424042
来源:知乎
著做权归做者全部。商业转载请联系做者得到受权,非商业转载请注明出处。
参考:
服务降级的目的,是为了防止Redis服务故障,致使数据库跟着一块儿发生雪崩问题。所以,对于不重要的缓存数据,能够采起服务降级策略,例如一个比较常见的作法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。
参考:
主要解决应用耦合,异步消息,流量削锋等问题
参考:
参考:
参考:
Sun Java System Message Queue 3.7 UR1 管理指南
参考:
参考:
消息队列的exclusive consumer功能是如何保证消息有序和防止脑裂的
beanfactory顾名思义,它的核心概念就是bean工厂,用做于bean生命周期的管理,而applicationcontext这个概念就比较丰富了,单看名字(应用上下文)就能看出它包含的范围更广,它继承自bean factory但不只仅是继承自这一个接口,还有继承了其余的接口,因此它不只仅有bean factory相关概念,更是一个应用系统的上下文,其设计初衷应该是一个一应俱全的对外暴露的一个综合的API。
参考:
参考:
参考:
参考:
java动态代理是利用反射机制生成一个实现代理接口的匿名类,在调用具体方法前调用InvokeHandler来处理。
而cglib动态代理是利用asm开源包,对代理对象类的class文件加载进来,经过修改其字节码生成子类来处理。
一、若是目标对象实现了接口,默认状况下会采用JDK的动态代理实现AOP
二、若是目标对象实现了接口,能够强制使用CGLIB实现AOP
三、若是目标对象没有实现了接口,必须采用CGLIB库,spring会自动在JDK动态代理和CGLIB之间转换
如何强制使用CGLIB实现AOP?
(1)添加CGLIB库,SPRING_HOME/cglib/*.jar
(2)在spring配置文件中加入
JDK动态代理和CGLIB字节码生成的区别?
(1)JDK动态代理只能对实现了接口的类生成代理,而不能针对类
(2)CGLIB是针对类实现代理,主要是对指定的类生成一个子类,覆盖其中的方法
由于是继承,因此该类或方法最好不要声明成final
参考:
参考:
参考:
能够结合spring的AOP,对注解进行拦截,提取注解。
大体流程为:
1. 新建一个注解@MyLog,加在须要注解申明的方法上面
2. 新建一个类MyLogAspect,经过@Aspect注解使该类成为切面类。
3. 经过@Pointcut 指定切入点 ,这里指定的切入点为MyLog注解类型,也就是被@MyLog注解修饰的方法,进入该切入点。
4. MyLogAspect中的方法经过加通知注解(@Before、@Around、@AfterReturning、@AfterThrowing、@After等各类通知)指定要作的业务操做。
1、先用文字描述
1.用户发送请求到DispatchServlet
2.DispatchServlet根据请求路径查询具体的Handler
3.HandlerMapping返回一个HandlerExcutionChain给DispatchServlet
HandlerExcutionChain:Handler和Interceptor集合
4.DispatchServlet调用HandlerAdapter适配器
5.HandlerAdapter调用具体的Handler处理业务
6.Handler处理结束返回一个具体的ModelAndView给适配器
ModelAndView:model–>数据模型,view–>视图名称
7.适配器将ModelAndView给DispatchServlet
8.DispatchServlet把视图名称给ViewResolver视图解析器
9.ViewResolver返回一个具体的视图给DispatchServlet
10.渲染视图
11.展现给用户
2、画图解析
SpringMvc的配置
参考:
参考:
Spring框架中使用到了大量的设计模式,下面列举了比较有表明性的:
代理模式—在AOP和remoting中被用的比较多。
单例模式—在spring配置文件中定义的bean默认为单例模式。
模板方法—用来解决代码重复的问题。好比. RestTemplate, JmsTemplate
, JpaTemplate。
工厂模式—BeanFactory用来建立对象的实例。
适配器–spring aop
装饰器–spring data hashmapper
观察者– spring 时间驱动模型
回调–Spring ResourceLoaderAware回调接口
前端控制器–spring用前端控制器DispatcherServlet对请求进行分发
参考:
Netty 是业界最流行的 NIO 框架之一,它的健壮性、功能、性能、可定制性和可扩展性在同类框架中都是数一数二的,它已经获得成百上千的商用项目验证,例如 Hadoop 的 RPC 框架 Avro 使用 Netty 做为通讯框架。不少其它业界主流的 RPC 和分布式服务框架,也使用 Netty 来构建高性能的异步通讯能力。
Netty 的优势总结以下:
正是由于这些优势,Netty 逐渐成为 Java NIO 编程的首选框架。
它会致使Selector空轮询,最终致使CPU 100%。官方声称在JDK1.6版本的update18修复了该问题,可是直到JDK1.7版本该问题仍旧存在,只不过该BUG发生几率下降了一些而已,它并无被根本解决。该BUG以及与该BUG相关的问题单能够参见如下连接内容。
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6403933
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=2147719
异常堆栈以下:
java.lang.Thread.State: RUNNABLE at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method) at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:210) at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:65) at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:69) - locked <0x0000000750928190> (a sun.nio.ch.Util$2) - locked <0x00000007509281a8> (a java.util.Collections$ UnmodifiableSet) - locked <0x0000000750946098> (a sun.nio.ch.EPollSelectorImpl) at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:80) at net.spy.memcached.MemcachedConnection.handleIO(Memcached Connection.java:217) at net.spy.memcached.MemcachedConnection.run(MemcachedConnection. java:836)
参考:
参考:
参考:
参考:
参考:
参考:
参考:
Spring Cloud、Dubbo、Hsf等
RPC的目的是让你在本地调用远程的方法,而对你来讲这个调用是透明的,你并不知道这个调用的方法是部署哪里。经过RPC能解耦服务,这才是使用RPC的真正目的。
参考:
dubbo提供功能来说, 提供基础功能-RPC调用 提供增值功能SOA服务治理
dubbo启动时查找可用的远程服务提供者,调用接口时不是最终调用本地实现,而是经过拦截调用(又用上JDK动态代理功能)过程通过一系列的的序列化、远程通讯、协议解析最终调用到远程服务提供者
参考:
REST是 一种软件架构风格、设计风格,它是一种面向资源的网络化超媒体应用的架构风格。它主要是用于构建轻量级的、可维护的、可伸缩的 Web 服务。基于 REST 的服务被称为 RESTful 服务。REST 不依赖于任何协议,可是几乎每一个 RESTful 服务使用 HTTP 做为底层协议,RESTful使用http method标识操做,例如:
http://127.0.0.1/user/1 GET 根据用户id查询用户数据
http://127.0.0.1/user POST 新增用户
http://127.0.0.1/user PUT 修改用户信息
http://127.0.0.1/user DELETE 删除用户信息
参考:
参考:
参考:
参考:
参考:
能够结合MQ实现最终一致性,例如电商系统,把生成订单数据的写操做逻辑经过事务控制,一些可有可无的业务例如日志处理,通知,经过异步消息处理,最终到请求落地。
参考:
能够把微服务当作去除了ESB的SOA。ESB是SOA架构中的中心总线,设计图形应该是星形的,而微服务是去中心化的分布式软件架构。
参考:
参考:
参考:
参考:
参考:
参考:
1、解决java集群的session共享的解决方案:
1.客户端cookie加密。(通常用于内网中企业级的系统中,要求用户浏览器端的cookie不能禁用,禁用的话,该方案会失效)。
2.集群中,各个应用服务器提供了session复制的功能,tomcat和jboss都实现了这样的功能。特色:性能随着服务器增长急剧降低,容易引发广播风暴;session数据须要序列化,影响性能。
3.session的持久化,使用数据库来保存session。就算服务器宕机也没事儿,数据库中的session照样存在。特色:每次请求session都要读写数据库,会带来性能开销。使用内存数据库,会提升性能,可是宕机会丢失数据(像支付宝的宕机,有同城灾备、异地灾备)。
4.使用共享存储来保存session。和数据库相似,就算宕机了也没有事儿。其实就是专门搞一台服务器,所有对session落地。特色:频繁的进行序列化和反序列化会影响性能。
5.使用memcached来保存session。本质上是内存数据库的解决方案。特色:存入memcached的数据须要序列化,效率极低。
2、分布式事务的解决方案:
1.TCC解决方案:try confirm cancel。
1.客户端cookie加密。(通常用于内网中企业级的系统中,要求用户浏览器端的cookie不能禁用,禁用的话,该方案会失效)。
2.集群中,各个应用服务器提供了session复制的功能,tomcat和jboss都实现了这样的功能。特色:性能随着服务器增长急剧降低,容易引发广播风暴;session数据须要序列化,影响性能。
3.session的持久化,使用数据库来保存session。就算服务器宕机也没事儿,数据库中的session照样存在。特色:每次请求session都要读写数据库,会带来性能开销。使用内存数据库,会提升性能,可是宕机会丢失数据(像支付宝的宕机,有同城灾备、异地灾备)。
4.使用共享存储来保存session。和数据库相似,就算宕机了也没有事儿。其实就是专门搞一台服务器,所有对session落地。特色:频繁的进行序列化和反序列化会影响性能。
5.使用memcached来保存session。本质上是内存数据库的解决方案。特色:存入memcached的数据须要序列化,效率极低。
好比交易系统的金额修改,同一时间只能又一我的操做,好比秒杀场景,同一时间只能一个用户抢到,好比火车站抢票等等
参考:
参考:
参考:
参考:
参考:
服务端指南 数据存储篇 | MySQL(09) 分库与分表带来的分布式困境与应对之策