python27期day16:序列化、json、pickle、hashlib、collections、软件开发规范、做业。

序列化模块:
什么是序列化呢? 序列化的本质就是将一种数据结构(如字典、列表)等转换成一个特殊的序列(字符串或者bytes)的过程就叫作序列化。
将这个字典直接写入文件是不能够的,必须转化成字符串的形式,并且你读取出来也是字符串形式的字典(能够用代码展现)。
json序列化除了能够解决写入文件的问题,还能够解决网络传输的问题,好比你将一个list数据结构经过网络传给另个开发者,那么你不能够直接传输,以前咱们说过,你要想传输出去必须用bytes类型。可是bytes类型只能与字符串类型互相转化,它不能与其余数据结构直接转化,因此,你只能将list ---> 字符串 ---> bytes 而后发送,对方收到以后,在decode() 解码成原字符串。此时这个字符串不能是咱们以前学过的str那种字符串,由于它不能反解,必需要是这个特殊的字符串,他能够反解成list 这样开发者之间就能够借助网络互传数据了,不只仅是开发者之间,你要借助网络爬取数据这些数据多半是这种特殊的字符串,你接受到以后,在反解成你须要的数据类型。
序列化模块就是将一个常见的数据结构转化成一个特殊的序列,而且这个特殊的序列还能够反解回去。它的主要用途:文件读写数据,网络传输数据。

不一样语言都遵循的一种数据转化格式,即不一样语言都使用的特殊字符串。(好比Python的一个列表[1, 2, 3]利用json转化成特殊的字符串,而后在编码成bytes发送给php的开发者,php的开发者就能够解码成特殊的字符串,而后在反解成原数组(列表): [1, 2, 3])php

json序列化只支持部分Python数据结构:dict,list, tuple,str,int, float,True,False,Nonejava

支持Python全部的数据类型包括实例化对象。python

json模块是将知足条件的数据结构转化成特殊的字符串,而且也能够反序列化还原回去。linux

序列化模块总共只有两种用法,要不就是用于网络传输的中间环节,要不就是文件存储的中间环节,因此json模块总共就有两对四个方法:git

json模块:

​ 用于网络传输:dumps、loadsgithub

​ 用于文件写读:dump、loadredis

dumps、loads:算法

一、将字典类型转换成字符串类型:数据库

import json 编程

dic = {'k1':'v1','k2':'v2','k3':'v3'}

str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串

print(type(str_dic),str_dic)

结果:<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"} #注意,json转换完的字符串类型的字典中的字符串是由""表示的
二、将字符串类型的字典转换成字典类型用loads:

import json

dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典

#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示

print(type(dic2),dic2)

结果:<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}

三、还支持列表类型:

list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]

str_dic = json.dumps(list_dic) #也能够处理嵌套的数据类型

print(type(str_dic),str_dic)

结果:<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]

list_dic2 = json.loads(str_dic)

print(type(list_dic2),list_dic2)

结果:<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]

dump、load:

一、将对象转换成字符串写入到文件当中:

import json

f = open('json_file.json','w')

dic = {'k1':'v1','k2':'v2','k3':'v3'}

json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件

f.close() # json文件也是文件,就是专门存储json字符串的文件。

二、将文件中的字符串类型的字典转换成字典:

import json

f = open('json_file.json')

dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回

f.close()

print(type(dic2),dic2)

三、其余参数说明:

ensure_ascii:,当它为True的时候,全部非ASCII码字符显示为\uXXXX序列,只需在dump时将ensure_ascii设置为False便可,此时存入json的中文便可正常显示。

separators:分隔符,其实是(item_separator, dict_separator)的一个元组,默认的就是(,,:);这表示dictionary内keys之间用“,”隔开,而KEY和value之间用“:”隔开。

sort_keys:将数据根据keys的值进行排序。 剩下的本身看源码研究

四、json序列化存储多个数据到同一个文件中:

对于json序列化,存储多个数据到一个文件中是有问题的,默认一个json文件只能存储一个json数据,可是也能够解决,举例说明:

对于json 存储多个数据到文件中:
dic1 = {'name':'oldboy1'}
dic2 = {'name':'oldboy2'}
dic3 = {'name':'oldboy3'}
f = open('序列化',encoding='utf-8',mode='a')
json.dump(dic1,f)
json.dump(dic2,f)
json.dump(dic3,f)
f.close()

f = open('序列化',encoding='utf-8')

ret = json.load(f)

ret1 = json.load(f)

ret2 = json.load(f)

print(ret)

上边的代码会报错,解决方法:

dic1 = {'name':'oldboy1'} dic2 = {'name':'oldboy2'} dic3 = {'name':'oldboy3'} f = open('序列化',encoding='utf-8',mode='a') str1 = json.dumps(dic1) f.write(str1+'\n') str2 = json.dumps(dic2) f.write(str2+'\n') str3 = json.dumps(dic3) f.write(str3+'\n') f.close()
f = open('序列化',encoding='utf-8') for line in f: print(json.loads(line))
pickle模块:

只能是Python语言遵循的一种数据转化格式,只能在python语言中使用。

pickle模块是将Python全部的数据结构以及对象等转化成bytes类型,而后还能够反序列化还原回去。

 刚才也跟你们提到了pickle模块,pickle模块是只能Python语言识别的序列化模块。若是把序列化模块比喻成全世界公认的一种交流语言,也就是标准的话,json就是像是英语,全世界(python,java,php,C,等等)都遵循这个标准。而pickle就是中文,只有中国人(python)做为第一交流语言。

既然只是Python语言使用,那么它支持Python全部的数据类型包括后面咱们要讲的实例化对象等,它能将这些全部的数据结构序列化成特殊的bytes,而后还能够反序列化还原。使用上与json几乎差很少,也是两对四个方法。

用于网络传输:dumps、loads

​用于文件写读:dump、load

dumps、loads:

import pickle

dic = {'k1':'v1','k2':'v2','k3':'v3'}

str_dic = pickle.dumps(dic)

print(str_dic) # bytes类型

dic2 = pickle.loads(str_dic)

print(dic2) #字典

# 还能够序列化对象

import pickle

def func():

   print(666)

ret = pickle.dumps(func)

print(ret,type(ret)) # b'\x80\x03c__main__\nfunc\nq\x00.' <class 'bytes'>

f1 = pickle.loads(ret) # f1获得 func函数的内存地址

f1() # 执行func函数

dump、load:

dic = {(1,2):'oldboy',1:True,'set':{1,2,3}}

f = open('pick序列化',mode='wb')

pickle.dump(dic,f)

f.close()

with open('pick序列化',mode='wb') as f1:

   pickle.dump(dic,f1)

pickle序列化存储多个数据到一个文件中:

dic1 = {'name':'oldboy1'}

dic2 = {'name':'oldboy2'}

dic3 = {'name':'oldboy3'}

f = open('pick多数据',mode='wb')

pickle.dump(dic1,f)

pickle.dump(dic2,f)

pickle.dump(dic3,f)

f.close()

f = open('pick多数据',mode='rb')

while True:

   try:

      print(pickle.load(f))

   except EOFError:

     break

f.close()

这时候机智的你又要说了,既然pickle如此强大,为何还要学json呢?这里咱们要说明一下,json是一种全部的语言均可以识别的数据结构。若是咱们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也能够拿来用。可是若是咱们用pickle进行序列化,其余语言就不能读懂这是什么了~因此,若是你序列化的内容是列表或者字典,咱们很是推荐你使用json模块,但若是出于某种缘由你不得不序列化其余的数据类型,而将来你还会用python对这个数据进行反序列化的话,那么就可使用pickle。

shelve模块
​ shelve模块:相似于字典的操做方式去操做特殊的字符串(不讲,能够课下了解)。
#一、将字典放入文本
import shelve
f = shelve.open(r"shelve")
f["stul_info"] = {"name":"alex","age":"18"}
f.close()
# dic = {}
# dic["name"] = "alvin"
# dic["info"] = {"name":"alex"}
XML模块
#一、用getroot打印根节点
import xml.etree.ElementTree as ET #as后面的ET代指前面模块的名字
tree = ET.parse("xml_lesson.xml") #用ET里面的parse方法并赋予对象tree、
root = tree.getroot()
print(root.tag)
#二、遍历xml文档
for i in root:
print(i)
#三、遍历属性tag
for i in root:
print(i.tag)
#四、双层循环遍历
for i in root:
for j in i:
print(j.tag)
#五、看值attrib属性组成键值对
for i in root :
print(i.attrib)
#六、遍历打印子元素
for i in root:
for j in i:
print(j.attrib)
#七、text
for i in root:
for j in i:
print(j.text)
re正则模块
import re
#一、找到以a开头和l结尾的
s = "hellocdalexfdsfdsfdsf"
print(s.find("alex"))
#二、371481198506143635(alex身份证号)
print(re.findall("\d+","alex22ccsd45vcxvcx767bvcbcv876"))
#三、findall(匹配规则+内容)
print(re.findall("alex","afdsvcxvfsg"))
#四、a..x(表明以a开头中间任意两个字符以x结尾的
print(re.findall("a..x","affxcvcvsdf"))
#五、^尖角号表明以什么开头
print(re.findall("^a..c","acxcxacxcx"))
#六、$表明以什么结尾
print(re.findall("a..x$","acxvfsdfsdarrx"))
#七、*表明0到无穷次
print(re.findall("d*","dfdsfdsfdsadsadddddddddvcxvxc"))
#八、?
#九、{}为范围取
#十、[]中括号字符集
#十一、(小括号
print(re.findall("\([^()]*\)","12 + (34 * 6 + 2 - 5*(2-1)"))
#12\d
#13\D
#1四、|管道符表明或的意思
print(re.findall(r"ka|b","sdjkbsf"))
print(re.findall(r"ka|b","sdjkabsf"))
print(re.findall(r"ka|bc","sdjkabcsf"))
#1五、d+
print(re.sub("\d+","A","fdsfdsfjaskd4324vcxvxc"))
#1六、加参数
print(re.subn("\d","A","jackcxcvsdfd4343543543vcxvxcavcxvxd543534fdfds",8))
#1七、
loging日志模块
#一、日志级别
import logging
#二、增长参数
# logging.basicConfig(
# level=logging.DEBUG,
# filename="logger.log",
# filename="w" #模式是追加
# )
# logging.debug("debug message")
# logging.info("info message")
# logging.warning("warning message")
# logging.error("error message")
# logging.critical("critical message")
#三、
import configparser
config = configparser.ConfigParser() #用configparser模块里面的ConfigParser类生成config对象
config["DEFAULT"] = {"ServerAliveInterval" : "45", #键值对
"Compression": "yes",
"CompressionLevel" : "9"}

config["bitbucket.org"] = {}
config["bitbucket.org"]["User"] = "hg"
config["topsecret.server.com"] = {}
topsecret = config["topsecret.server.com"]
topsecret["Host Port"] = "50022"
topsecret["ForwardXll"] = "no"
config["DEFAULT"]["ForwardXll"] = "yes"
with open("example.ini","w") as configfile:
config.write(configfile)
hashlib哈希模块:

hashlib的特征以及使用要点:

一、bytes类型数据 ---> 经过hashlib算法 ---> 固定长度的字符串

二、不一样的bytes类型数据转化成的结果必定不一样。

三、相同的bytes类型数据转化成的结果必定相同。

四、此转化过程不可逆。

hashlib模块就至关于一个算法的集合,这里面包含着不少的算法,算法越高,转化成的结果越复杂,安全程度越高,相应的效率就会越低。

普通加密:

咱们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:

import hashlib

md5 = hashlib.md5()

md5.update('123456'.encode('utf-8')) # 必须是bytes类型才可以进行加密

print(md5.hexdigest())

# 计算结果以下:

'e10adc3949ba59abbe56e057f20f883e'

# 验证:相同的bytes数据转化的结果必定相同

import hashlib

md5 = hashlib.md5()

md5.update('123456'.encode('utf-8'))

print(md5.hexdigest())

# 计算结果以下:

'e10adc3949ba59abbe56e057f20f883e'

# 验证:不相同的bytes数据转化的结果必定不相同

import hashlib

md5 = hashlib.md5()

md5.update('12345'.encode('utf-8'))

print(md5.hexdigest())

# 计算结果以下:

'827ccb0eea8a706c4c34a16891f84e7b'

固定加盐:

ret = hashlib.md5('xx教育'.encode('utf-8')) # xx教育就是固定的盐

ret.update('a'.encode('utf-8'))

print(ret.hexdigest())

结果:d9e8fff14a026ecefa7d700334279762

动态加盐:

username = '宝元666'

ret = hashlib.md5(username[::2].encode('utf-8')) # 针对于每一个帐户,每一个帐户的盐都不同

ret.update('a'.encode('utf-8'))

print(ret.hexdigest())

sha系列:sha1,sha224,sha512等等,数字越大,加密的方法越复杂,安全性越高,可是效率就会越慢。

ret = hashlib.sha1()

ret.update('guobaoyuan'.encode('utf-8'))

print(ret.hexdigest())

#也可加盐

ret = hashlib.sha384(b'asfdsa')

ret.update('guobaoyuan'.encode('utf-8'))

print(ret.hexdigest())

# 也能够加动态的盐

ret = hashlib.sha384(b'asfdsa'[::2])

ret.update('guobaoyuan'.encode('utf-8'))

print(ret.hexdigest())

文件的一致性校验:

hashlib模块除了能够用于密码加密以外,还有一个经常使用的功能,那就是文件的一致性校验。linux讲究:一切皆文件,咱们普通的文件,是文件,视频,音频,图片,以及应用程序等都是文件。咱们都从网上下载过资源,好比咱们刚开学时让你们从网上下载Python解释器,当时你可能没有注意过,其实你下载的时候都是带一个MD5或者shax值的,为何? 咱们的网络世界是很不安全的,常常会遇到病毒,木马等,有些你是看不到的可能就植入了你的电脑中,那么他们是怎么来的? 都是经过网络传入来的,就是你在网上下载一些资源的时候,趁虚而入,固然大部分被咱们的浏览器或者杀毒软件拦截了,可是还有一部分偷偷的进入你的磁盘中了。那么咱们本身如何验证咱们下载的资源是否有病毒呢?这就须要文件的一致性校验了。在咱们下载一个软件时,每每都带有一个MD5或者shax值,当咱们下载完成这个应用程序时你要是对比大小根本看不出什么问题,你应该对比他们的md5值,若是两个md5值相同,就证实这个应用程序是安全的,若是你下载的这个文件的MD5值与服务端给你提供的不一样,那么就证实你这个应用程序确定是植入病毒了(文件损坏的概率很低),那么你就应该赶忙删除,不该该安装此应用程序。

咱们以前说过,md5计算的就是bytes类型的数据的转换值,同一个bytes数据用一样的加密方式转化成的结果必定相同,若是不一样的bytes数据(即便一个数据只是删除了一个空格)那么用一样的加密方式转化成的结果必定是不一样的。因此,hashlib也是验证文件一致性的重要工具。

校验Pyhton解释器的Md5值是否相同:

import hashlib
def file_check(file_path):
with open(file_path,mode='rb') as f1:
sha256 = hashlib.md5()
while 1:
content = f1.read(1024)
if content:
sha256.update(content)
else:
return sha256.hexdigest()
print(file_check('python-3.6.6-amd64.exe'))
socketserver模块:

server类:处理连接包含:BaseServer、TcpServer、UdpServer、UnixStreamServer、UnixDatagramServer。
request类:处理通讯包含BaseRequestHandler、StreamRequestHandler、DatagramRequestHandler。
对于tcp来讲
self.request=conn
对于udp来讲
self.request=(client_data_bytes,udp的套接字对象)
collections(收藏)模块:
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict以及判断什么是可迭代对象什么是迭代器

1.namedtuple: 生成可使用名字来访问元素内容的tuple

2.deque: 双端队列,能够快速的从另一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

namedtuple:

咱们知道tuple能够表示不变数据,例如,一个点的二维坐标就能够表示成:



可是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
这时,namedtuple就派上了用场:p = (1, 2)
from collections import namedtuple
point = namedtuple("point",["x","y"])
p = point(1,2)
print(p)
结果:point(x=1, y=2)

deque:

使用list存储数据时,按索引访问元素很快,可是插入和删除元素就很慢了,由于list是线性存储,数据量大的时候,插入和删除效率很低。 

deque是为了高效实现插入和删除操做的双向列表,适合用于队列和栈:

from collections import deque

q = deque(['a', 'b', 'c'])

q.append('x')

q.appendleft('y')

print(q)

 

结果:q deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就能够很是高效地往头部添加或删除元素。

OrderedDict:

使用dict时,Key是无序的。在对dict作迭代时,咱们没法肯定Key的顺序。

若是要保持Key的顺序,能够用OrderedDict:

from collections import OrderedDict
od = OrderedDict([("a",1),("b",2),("c",3)])
print(od)
结果:OrderedDict([('a', 1), ('b', 2), ('c', 3)])
OrderedDict的Key会按照插入的顺序排列,不是Key自己排序:
from collections import OrderedDict
od = OrderedDict([("a",1),("b",2),("c",3)])
od["z"] = 1
od["y"] = 2
od["x"] = 3
print(od.keys())

结果:odict_keys(['a', 'b', 'c', 'z', 'y', 'x'])

defaultdict:

有以下值集合 [11,22,33,44,55,66,77,88,99,90...],将全部大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

即: {'k1': 大于66 , 'k2': 小于66}

from collections import defaultdict
values = [11,22,33,44,55,66,77,88,99,90]
my_dict = defaultdict(list)
for value in values:
if value > 66:
my_dict["k1"].append(value)
else:
my_dict["k2"].append(value)
print(my_dict)
结果:defaultdict(<class 'list'>, {'k2': [11, 22, 33, 44, 55, 66], 'k1': [77, 88, 99, 90]})

Counter:

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素做为key,其计数做为value。计数值能够是任意的Interger(包括0和负数)。Counter类和其余语言的bags或multisets很类似。

from collections import Counter
c = Counter("dsadasdsfdafsdsfds")
print(c)
结果:Counter({'d': 6, 's': 6, 'a': 3, 'f': 3})

isinstance:

判断当前数据类型,返回的是一个布尔值

from collections import Iterable,Iterator lst = [1,2,3,4] print(isinstance(lst,list)) # 判断lst是否是列表类型 返回的是True print(isinstance(lst,Iterator)) # 判断lst是否是迭代器 返回的是False print(isinstance(lst,Iterable)) # 判断lst是否是可迭代对象 返回的是True
软件开发规范:

你如今包括以前写的一些程序,所谓的'项目',都是在一个py文件下完成的,代码量撑死也就几百行,你认为没问题,挺好。可是真正的后端开发的项目,系统等,少则几万行代码,多则十几万,几十万行代码,你全都放在一个py文件中行么?固然你能够说,只要能实现功能便可。我们举个例子,若是你的衣物只有三四件,那么你随便堆在橱柜里,没问题,咋都能找到,也不显得特别乱,可是若是你的衣物,有三四十件的时候,你在都堆在橱柜里,可想而知,你找你穿过三天的袜子,最终从你的大衣口袋里翻出来了,这是什么感受和心情......

  软件开发,规范你的项目目录结构,代码规范,遵循PEP8规范等等,让你更加清晰滴,合理滴开发。

那么接下来咱们以博客园系统的做业举例,将咱们以前在一个py文件中的全部代码,整合成规范的开发。

首先咱们看一下,这个是咱们以前的目录结构(简化版):

image-20190808184433407

py文件的具体代码以下:

status_dic = { 'username': None, 'status': False, } flag = True def login(): i = 0 with open('register', encoding='utf-8') as f1: dic = {i.strip().split('|')[0]: i.strip().split('|')[1] for i in f1} while i < 3: username = input('请输入用户名:').strip() password = input('请输入密码:').strip() if username in dic and dic[username] == password: print('登陆成功') return True else: print('用户名密码错误,请从新登陆') i += 1 def register(): with open('register', encoding='utf-8') as f1: dic = {i.strip().split('|')[0]: i.strip().split('|')[1] for i in f1} while 1: print('\033[1;45m 欢迎来到注册页面 \033[0m') username = input('请输入用户名:').strip() if not username.isalnum(): print('\033[1;31;0m 用户名有非法字符,请从新输入 \033[0m') continue if username in dic: print('\033[1;31;0m 用户名已经存在,请从新输入 \033[0m') continue password = input('请输入密码:').strip() if 6 <= len(password) <= 14: with open('register', encoding='utf-8', mode='a') as f1: f1.write(f'\n{username}|{password}') status_dic['username'] = str(username) status_dic['status'] = True print('\033[1;32;0m 恭喜您,注册成功!已帮您成功登陆~ \033[0m') return True else: print('\033[1;31;0m 密码长度超出范围,请从新输入 \033[0m') def auth(func): def inner(*args, **kwargs): if status_dic['status']: ret = func(*args, **kwargs) return ret else: print('\033[1;31;0m 请先进行登陆 \033[0m') if login(): ret = func(*args, **kwargs) return ret return inner @auth def article(): print(f'\033[1;32;0m 欢迎{status_dic["username"]}访问文章页面\033[0m') @auth def diary(): print(f'\033[1;32;0m 欢迎{status_dic["username"]}访问日记页面\033[0m') @auth def comment(): print(f'\033[1;32;0m 欢迎{status_dic["username"]}访问评论页面\033[0m') @auth def enshrine(): print(f'\033[1;32;0m 欢迎{status_dic["username"]}访问收藏页面\033[0m') def login_out(): status_dic['username'] = None status_dic['status'] = False print('\033[1;32;0m 注销成功 \033[0m') def exit_program(): global flag flag = False return flag choice_dict = { 1: login, 2: register, 3: article, 4: diary, 5: comment, 6: enshrine, 7: login_out, 8: exit_program, } while flag: print(''' 欢迎来到博客园首页 1:请登陆 2:请注册 3:文章页面 4:日记页面 5:评论页面 6:收藏页面 7:注销 8:退出程序''') choice = input('请输入您选择的序号:').strip() if choice.isdigit(): choice = int(choice) if 0 < choice <= len(choice_dict): choice_dict[choice]() else: print('\033[1;31;0m 您输入的超出范围,请从新输入 \033[0m') else: print('\033[1;31;0m 您您输入的选项有非法字符,请从新输入 \033[0m') 

此时咱们是将全部的代码都写到了一个py文件中,若是代码量多且都在一个py文件中,那么对于代码结构不清晰,不规范,运行起来效率也会很是低。因此咱们接下来一步一步的修改:

  1. 程序配置.

image-20190808183553328

你项目中全部的有关文件的操做出现几处,都是直接写的register相对路径,若是说这个register注册表路径改变了,或者你改变了register注册表的名称,那么相应的这几处都须要一一更改,这样其实你就是把代码写死了,那么怎么解决? 我要统一相同的路径,也就是统一相同的变量,在文件的最上面写一个变量指向register注册表的路径,代码中若是须要这个路径时,直接引用便可。

image-20190808183612322

  1. 划分文件

image-20190808183637363

一个项目的函数不能只是这些,咱们只是举个例子,这个小做业函数都已经这么多了,那么要是一个具体的实际的项目,函数会很是多,因此咱们应该将这些函数进行分类,而后分文件而治。在这里我划分了如下几个文件:

settings.py: 配置文件,就是放置一些项目中须要的静态参数,好比文件路径,数据库配置,软件的默认设置等等

相似于咱们做业中的这个:

image-20190808183653259

common.py:公共组件文件,这里面放置一些咱们经常使用的公共组件函数,并非咱们核心逻辑的函数,而更像是服务于整个程序中的公用的插件,程序中须要即调用。好比咱们程序中的装饰器auth,有些函数是须要这个装饰器认证的,可是有一些是不须要这个装饰器认证的,它既是何处须要何处调用便可。好比还有密码加密功能,序列化功能,日志功能等这些功能均可以放在这里。

image-20190808183706876

src.py:这个文件主要存放的就是核心逻辑功能,你看你须要进行选择的这些核心功能函数,都应该放在这个文件中。

image-20190808183722810

start.py:项目启动文件。你的项目须要有专门的文件启动,而不是在你的核心逻辑部分进行启动的,有人对这个可能不太理解,我为何还要设置一个单独的启动文件呢?你看你生活中使用的全部电器基本都一个单独的启动按钮,汽车,热水器,电视,等等等等,那么为何他们会单独设置一个启动按钮,而不是在一堆线路板或者内部随便找一个地方开启呢? 目的就是放在显眼的位置,方便开启。你想一想你的项目这么多py文件,若是src文件也有不少,那么到底哪一个文件启动整个项目,你还得一个一个去寻找,太麻烦了,这样我把它单独拿出来,就是方便开启整个项目。

那么咱们写的项目开启整个项目的代码就是下面这段:

image-20190808183736591

你把这些放置到一个文件中也能够,可是没有必要,咱们只须要一个命令或者一个开启指令就行,就比如咱们开启电视只须要让人很快的找到那个按钮便可,对于按钮后面的一些复杂的线路板,咱们并不关心,因此咱们要将上面这个段代码整合成一个函数,开启项目的''按钮''就是此函数的执行便可。

image-20190808183749056

这个按钮要放到启动文件start.py里面。

除了以上这几个py文件以外还有几个文件,也是很是重要的:

相似于register文件:这个文件文件名不固定,register只是咱们项目中用到的注册表,可是这种文件就是存储数据的文件,相似于文本数据库,那么咱们一些项目中的数据有的是从数据库中获取的,有些数据就是这种文本数据库中获取的,总之,你的项目中有时会遇到将一些数据存储在文件中,与程序交互的状况,因此咱们要单独设置这样的文件。

log文件:log文件顾名思义就是存储log日志的文件。日志咱们一会就会讲到,日志主要是供开发人员使用。好比你项目中出现一些bug问题,好比开发人员对服务器作的一些操做都会记录到日志中,以便开发者浏览,查询。

至此,咱们将这个做业原来的两个文件,合理的划分红了6个文件,可是仍是有问题的,若是咱们的项目很大,你的每个部分相应的你一个文件存不下的,好比你的src主逻辑文件,函数不少,你是否是得分红:src1.py src2.py?

你的文本数据库register这个只是一个注册表,若是你还有我的信息表,记录表呢? 若是是这样,你的整个项目也是很是凌乱的:

image-20190808183851177

3. 划分具体目录

上面看着就很是乱了,那么如何整改呢? 其实很是简单,原来你就是30件衣服放在一个衣柜里,那么你就得分类装,放外套的地方,放内衣的地方,放佩饰的地方等等,可是忽然你的衣服编程300件了,那一个衣柜放不下,我就整多个柜子,分别放置不一样的衣物。因此咱们这能够整多个文件夹,分别管理不一样的物品,那么标准版本的目录结构就来了:

为何要设计项目目录结构?

"设计项目目录结构",就和"代码编码风格"同样,属于我的风格问题。对于这种风格上的规范,一直都存在两种态度:

  1. 一类同窗认为,这种我的风格问题"可有可无"。理由是能让程序work就好,风格问题根本不是问题。
  2. 另外一类同窗认为,规范化能更好的控制程序结构,让程序具备更高的可读性。

我是比较偏向于后者的,由于我是前一类同窗思想行为下的直接受害者。我曾经维护过一个很是很差读的项目,其实现的逻辑并不复杂,可是却耗费了我很是长的时间去理解它想表达的意思。今后我我的对于提升项目可读性、可维护性的要求就很高了。"项目目录结构"其实也是属于"可读性和可维护性"的范畴,咱们设计一个层次清晰的目录结构,就是为了达到如下两点:

  1. 可读性高: 不熟悉这个项目的代码的人,一眼就能看懂目录结构,知道程序启动脚本是哪一个,测试目录在哪儿,配置文件在哪儿等等。从而很是快速的了解这个项目。
  2. 可维护性高: 定义好组织规则后,维护者就能很明确地知道,新增的哪一个文件和代码应该放在什么目录之下。这个好处是,随着时间的推移,代码/配置的规模增长,项目结构不会混乱,仍然可以组织良好。

因此,我认为,保持一个层次清晰的目录结构是有必要的。更况且组织一个良好的工程目录,实际上是一件很简单的事儿。

image-20190808183906562

上面那个图片就是较好的目录结构。

二. 按照项目目录结构,规范博客园系统

接下来,我就带领你们把具体的代码写入对应的文件中,而且将此项目启动起来,必定要跟着个人步骤一步一步去执行:

  1. 配置start.py文件

咱们首先要配置启动文件,启动文件很简答就是将项目的启动执行放置start.py文件中,运行start.py文件能够成功启动项目便可。 那么项目的启动就是这个指令run() 咱们把这个run()放置此文件中不就好了?

image-20190808184513416

这样你能执行这个项目么?确定是不能够呀,你的starts.py根本就找不到run这个变量,确定是会报错的。

NameError: name 'run' is not defined 本文件确定是找不到run这个变量也就是函数名的,不过这个难不倒咱们,咱们刚学了模块, 另个一文件的内容咱们能够引用过来。可是你发现import run 或者 from src import run 都是报错的。为何呢? 骚年,遇到报错不要慌!咱们说过你的模块之因此能够引用,那是由于你的模块确定在这个三个地方:内存,内置,sys.path里面,那么core在内存中确定是没有的,也不是内置,并且sys.path也不可能有,由于sys.path只会将你当前的目录(bin)加载到内存,因此你刚才那么引用确定是有问题的,那么如何解决?内存,内置你是左右不了的,你只能将core的路径添加到sys.path中,这样就能够了。

import sys sys.path.append(r'D:\lnh.python\py project\teaching_show\blog\core') from src import run run() 

这样虽然解决了,可是你不以为有问题么?你如今从这个start文件须要引用src文件,那么你须要手动的将src的工做目录添加到sys.path中,那么有没有可能你会引用到其余的文件?好比你的项目中可能须要引用conf,lib等其余py文件,那么在每次引用以前,或者是开启项目时,所有把他们添加到sys.path中么?

sys.path.append(r'D:\lnh.python\py project\teaching_show\blog\core') sys.path.append(r'D:\lnh.python\py project\teaching_show\blog\conf') sys.path.append(r'D:\lnh.python\py project\teaching_show\blog\db') sys.path.append(r'D:\lnh.python\py project\teaching_show\blog\lib') 

这样是否是太麻烦了? 咱们应该怎么作?咱们应该把项目的工做路径添加到sys.path中,用一个例子说明:你想找张三,李四,王五,赵六等人,这些人所有都在一栋楼好比在汇德商厦,那么我就告诉你汇德商厦的位置:北京昌平区沙河镇汇德商厦。 你到了汇德商厦你在找具体这些人就能够了。因此咱们只要将这个blog项目的工做目录添加到sys.path中,这样不管这个项目中的任意一个文件引用项目中哪一个文件,就均可以找到了。因此:

import sys
sys.path.append(r'D:\lnh.python\py project\teaching_show\blog')
from core.src import run
run()

上面仍是差一点点,你这样写你的blog的路径就写死了,你的项目不可能只在你的电脑上,项目是共同开发的,你的项目确定会出如今别人电脑上,那么你的路径就是问题了,在你的电脑上你的blog项目的路径是上面所写的,若是移植到别人电脑上,他的路径不可能与你的路径相同, 这样就会报错了,因此咱们这个路径要动态获取,不能写死,因此这样就解决了:

import sys import os # sys.path.append(r'D:\lnh.python\py project\teaching_show\blog') print(os.path.dirname(__file__)) # 获取本文件的绝对路径 # D:/lnh.python/py project/teaching_show/blog/bin print(os.path.dirname(os.path.dirname(__file__))) # 获取父级目录也就是blog的绝对路径 # D:/lnh.python/py project/teaching_show/blog BATH_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.append(BATH_DIR) from core.src import run run() 

那么还差一个小问题,这个starts文件能够当作脚本文件进行直接启动,若是是做为模块,被别人引用的话,按照这么写,也是能够启动整个程序的,这样合理么?这样是不合理的,做为启动文件,是不能够被别人引用启动的,因此咱们此时要想到 __name__了:

import sys import os # sys.path.append(r'D:\lnh.python\py project\teaching_show\blog') # print(os.path.dirname(__file__)) # 获取本文件的绝对路径 # D:/lnh.python/py project/teaching_show/blog/bin # print(os.path.dirname(os.path.dirname(__file__))) # 获取父级目录也就是blog的绝对路径 # D:/lnh.python/py project/teaching_show/blog BATH_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.append(BATH_DIR) from core.src import run if __name__ == '__main__': run() 

这样,咱们的starts启动文件就已经配置成功了。之后只要咱们经过starts文件启动整个程序,它会先将整个项目的工做目录添加到sys.path中,而后在启动程序,这样我整个项目里面的任何的py文件想引用项目中的其余py文件,都是你能够的了。

  1. 配置settings.py文件。

接下来,咱们就会将咱们项目中的静态路径,数据库的链接设置等等文件放置在settings文件中。

咱们看一下,你的主逻辑src中有这样几个变量:

status_dic = { 'username': None, 'status': False, } flag = True register_path = r'D:\lnh.python\py project\teaching_show\blog\register' 

咱们是否是应该把这几个变量都放置在settings文件中呢?不是!setttings文件叫作配置文件,其实也叫作配置静态文件,什么叫静态? 静态就是通常不会轻易改变的,可是对于上面的代码status_dic ,flag这两个变量,因为在使用这个系统时会时长变化,因此不建议将这个两个变量放置在settings配置文件中,只须要将register_path放置进去就能够。

register_path = r'D:\lnh.python\py project\teaching_show\blog\register' 

image-20190808185147957

可是你将这个变量放置在settings.py以后,你的程序启动起来是有问题,为何?

with open(register_path, encoding='utf-8') as f1: NameError: name 'register_path' is not defined 

由于主逻辑src中找不到register_path这个路径了,因此会报错,那么咱们解决方式就是在src主逻辑中引用settings.py文件中的register_path就能够了。

image-20190808185220737

这里引起一个问题:为何你这样写就能够直接引用settings文件呢?咱们在starts文件中已经说了,刚已启动blog文件时,咱们手动将blog的路径添加到sys.path中了,这就意味着,我在整个项目中的任何py文件,均可以引用到blog项目目录下面的任何目录:bin,conf,core,db,lib,log这几个,因此,刚才咱们引用settings文件才是能够的。

  1. 配置common.py文件

接下来,咱们要配置咱们的公共组件文件,在咱们这个项目中,装饰器就是公共组件的工具,咱们要把装饰器这个工具配置到common.py文件中。先把装饰器代码剪切到common.py文件中。这样直接粘过来,是有各类问题的:

image-20190808185244851

因此咱们要在common.py文件中引入src文件的这两个变量。

image-20190808185313895

但是你的src文件中使用了auth装饰器,此时你的auth装饰器已经移动位置了,因此你要在src文件中引用auth装饰器,这样才可使用上

image-20190808185333682

image-20190808185348147

OK,这样你就算是将你以前写的模拟博客园登陆的做业按照规范化目录结构合理的完善完成了,最后还有一个关于README文档的书写。

关于README的内容

这个我以为是每一个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

它须要说明如下几个事项:

  1. 软件定位,软件的基本功能。
  2. 运行代码的方法: 安装环境、启动命令等。
  3. 简要的使用说明。
  4. 代码目录结构说明,更详细点能够说明软件的基本原理。
  5. 常见问题说明。

我以为有以上几点是比较好的一个README。在软件开发初期,因为开发过程当中以上内容可能不明确或者发生变化,并非必定要在一开始就将全部信息都补全。可是在项目完结的时候,是须要撰写这样的一个文档的。

能够参考Redis源码中Readme的写法,这里面简洁可是清晰的描述了Redis功能和源码结构。

做业题:

# 1.使用软件开发规范的方式实现一下模拟博客园登陆# a.注册时须要对密码进行加密# b.登陆时须要加密而后校验"""2.使用hashlib和json从新实现三次登陆锁定a.注册时须要对密码进行加密b.将错误用户帐号和错误次数编写成以下结构,存储到错误文件中{"alex":2}{"meet":3}"""import hashlibimport jsonlogin_dic = {    "count":3}file_path = "userinfo.txt"error_path = "error_user.txt"def my_md5(user,pwd):    md5 = hashlib.md5(user.encode("utf-8"))    md5.update(pwd.encode("utf-8"))    pwd = md5.hexdigest()    return pwddef auth(user,pwd):    with open(file_path, "a+", encoding="utf-8")as ff:        ff.seek(0)        pwd = my_md5(user, pwd)        for em in ff:            file_user, file_pwd = em.strip().split(":")            # pwd = my_md5(user, pwd)      # 错误问题:同名            # print(file_user,file_pwd,user,pwd)            if file_user == user and file_pwd == pwd:                print(f"欢迎{user}登陆!")                login_dic['count'] = 0                return        else:            login_dic['count'] -= 1            if user in error_dic:                error_dic[user] += 1            else:                error_dic[user] = 1            f = open(error_path, 'w', encoding="utf-8")            f.write(json.dumps(error_dic))            print(f"用户密码错误,剩余次数:{login_dic['count']}")def register(user,pwd):    """    注册    :param user:    :param pwd:    :return:    """    with open(file_path,"a+",encoding="utf-8")as f:        f.seek(0)        for i in f:            file_user,file_pwd = i.split(":") # ['alex',"alex1234"]            if user == file_user:                print("用户名已存在!")                return        else:            pwd = my_md5(user,pwd)            print(pwd)            f.write(f"{user}:{pwd}\n")            print("注册成功!")error_dic = {} # {"alex":2,"meet":3}def login(user,pwd):    with open(error_path,"a+",encoding="utf-8")as f1:        f1.seek(0)        for i in f1:            error_dic.update(json.loads(i))        print(error_dic)        if user in error_dic:            if error_dic[user] >= 3:                print(f"{user}用户锁定!")                login_dic['count'] = 0            else:                auth(user,pwd)        else:            auth(user,pwd)msg = """1.登陆2.注册"""func_dic = {   "2":register,   "1":login}while login_dic['count']:    choose = input(msg)    if choose in func_dic:        user = input("username:")        pwd = input("password:")        func_dic[choose](user, pwd)    else:        print("输入有误!")# 22e02a465ca7e6f8e93db22ebb78f096
相关文章
相关标签/搜索