参考文献 Tensorflow官方文档 tf.transpose函数解析 tf.slice函数解析 CIFAR10/CIFAR100数据集介绍 tf.train.shuffle_batch函数解析 Python urllib urlretrieve函数解析python
import os import tarfile import tensorflow as tf from six.moves import urllib from tensorflow.python.framework import ops ops.reset_default_graph() # 更改工做目录 abspath = os.path.abspath(__file__) # 获取当前文件绝对地址 # E:\GitHub\TF_Cookbook\08_Convolutional_Neural_Networks\03_CNN_CIFAR10\ostest.py dname = os.path.dirname(abspath) # 获取文件所在文件夹地址 # E:\GitHub\TF_Cookbook\08_Convolutional_Neural_Networks\03_CNN_CIFAR10 os.chdir(dname) # 转换目录文件夹到上层 # Start a graph session # 初始化Session sess = tf.Session() # 设置模型超参数 batch_size = 128 # 批处理数量 data_dir = 'temp' # 数据目录 output_every = 50 # 输出训练loss值 generations = 20000 # 迭代次数 eval_every = 500 # 输出测试loss值 image_height = 32 # 图片高度 image_width = 32 # 图片宽度 crop_height = 24 # 裁剪后图片高度 crop_width = 24 # 裁剪后图片宽度 num_channels = 3 # 图片通道数 num_targets = 10 # 标签数 extract_folder = 'cifar-10-batches-bin' # 指数学习速率衰减参数 learning_rate = 0.1 # 学习率 lr_decay = 0.1 # 学习率衰减速度 num_gens_to_wait = 250. # 学习率更新周期 # 提取模型参数 image_vec_length = image_height*image_width*num_channels # 将图片转化成向量所需大小 record_length = 1 + image_vec_length # ( + 1 for the 0-9 label) # 读取数据 data_dir = 'temp' if not os.path.exists(data_dir): # 当前目录下是否存在temp文件夹 os.makedirs(data_dir) # 若是当前文件目录下不存在这个文件夹,建立一个temp文件夹 # 设定CIFAR10下载路径 cifar10_url = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz' # 检查这个文件是否存在,若是不存在下载这个文件 data_file = os.path.join(data_dir, 'cifar-10-binary.tar.gz') # temp\cifar-10-binary.tar.gz if os.path.isfile(data_file): pass else: # 回调函数,当链接上服务器、以及相应的数据块传输完毕时会触发该回调,咱们能够利用这个回调函数来显示当前的下载进度。 # block_num已经下载的数据块数目,block_size数据块大小,total_size下载文件总大小 def progress(block_num, block_size, total_size): progress_info = [cifar10_url, float(block_num*block_size)/float(total_size)*100.0] print('\r Downloading {} - {:.2f}%'.format(*progress_info), end="") # urlretrieve(url, filename=None, reporthook=None, data=None) # 参数 finename 指定了保存本地路径(若是参数未指定,urllib会生成一个临时文件保存数据。) # 参数 reporthook 是一个回调函数,当链接上服务器、以及相应的数据块传输完毕时会触发该回调,咱们能够利用这个回调函数来显示当前的下载进度。 # 参数 data 指 post 到服务器的数据,该方法返回一个包含两个元素的(filename, headers)元组,filename 表示保存到本地的路径,header 表示服务器的响应头。 # 此处 url=cifar10_url,filename=data_file,reporthook=progress filepath, _ = urllib.request.urlretrieve(cifar10_url, data_file, progress) # 解压文件 tarfile.open(filepath, 'r:gz').extractall(data_dir) # Define CIFAR reader # 定义CIFAR读取器 def read_cifar_files(filename_queue, distort_images=True): reader = tf.FixedLengthRecordReader(record_bytes=record_length) # 返回固定长度的文件记录 record_length函数参数为一条图片信息即1+32*32*3 key, record_string = reader.read(filename_queue) # 此处调用tf.FixedLengthRecordReader.read函数返回键值对 record_bytes = tf.decode_raw(record_string, tf.uint8) # 读出来的原始文件是string类型,此处咱们须要用decode_raw函数将String类型转换成uint8类型 image_label = tf.cast(tf.slice(record_bytes, [0], [1]), tf.int32) # 见slice函数用法,取从0号索引开始的第一个元素。并将其转化为int32型数据。其中存储的是图片的标签 # 截取图像 image_extracted = tf.reshape(tf.slice(record_bytes, [1], [image_vec_length]), [num_channels, image_height, image_width]) # 从1号索引开始提取图片信息。这和此数据集存储图片信息的格式相关。 # CIFAR-10数据集中 """第一个字节是第一个图像的标签,它是一个0-9范围内的数字。接下来的3072个字节是图像像素的值。 前1024个字节是红色通道值,下1024个绿色,最后1024个蓝色。值以行优先顺序存储,所以前32个字节是图像第一行的红色通道值。 每一个文件都包含10000个这样的3073字节的“行”图像,但没有任何分隔行的限制。所以每一个文件应该彻底是30730000字节长。""" # Reshape image image_uint8image = tf.transpose(image_extracted, [1, 2, 0]) # 详见tf.transpose函数,将[channel,image_height,image_width]转化为[image_height,image_width,channel]的数据格式。 reshaped_image = tf.cast(image_uint8image, tf.float32) # 将图片剪裁或填充至合适大小 final_image = tf.image.resize_image_with_crop_or_pad(reshaped_image, crop_width, crop_height) if distort_images: # 将图像水平随机翻转,改变亮度和对比度。 final_image = tf.image.random_flip_left_right(final_image) final_image = tf.image.random_brightness(final_image, max_delta=63) final_image = tf.image.random_contrast(final_image, lower=0.2, upper=1.8) # 对图片作标准化处理 """Linearly scales `image` to have zero mean and unit norm. This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average of all values in image, and `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`. `stddev` is the standard deviation of all values in `image`. It is capped away from zero to protect against division by 0 when handling uniform images.""" final_image = tf.image.per_image_standardization(final_image) return (final_image, image_label) # Create a CIFAR image pipeline from reader # 从阅读器中构造CIFAR图片管道 def input_pipeline(batch_size, train_logical=False): # train_logical标志用于区分读取训练和测试数据集 if train_logical: files = [os.path.join(data_dir, extract_folder, 'data_batch_{}.bin'.format(i)) for i in range(1, 6)] # data_dir=tmp # extract_folder=cifar-10-batches-bin else: files = [os.path.join(data_dir, extract_folder, 'test_batch.bin')] filename_queue = tf.train.string_input_producer(files) image, label = read_cifar_files(filename_queue) print(train_logical, 'after read_cifar_files ops image', sess.run(tf.shape(image))) print(train_logical, 'after read_cifar_files ops label', sess.run(tf.shape(label))) # min_after_dequeue defines how big a buffer we will randomly sample # from -- bigger means better shuffling but slower start up and more # memory used. # capacity must be larger than min_after_dequeue and the amount larger # determines the maximum we will prefetch. Recommendation: # min_after_dequeue + (num_threads + a small safety margin) * batch_size min_after_dequeue = 5000 capacity = min_after_dequeue + 3*batch_size # 批量读取图片数据 example_batch, label_batch = tf.train.shuffle_batch([image, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue) print(train_logical, 'after shuffle_batch ops image', sess.run(tf.shape(image))) print(train_logical, 'after shuffle_batch ops example_batch', sess.run(tf.shape(example_batch))) print(train_logical, 'after shuffle_batch ops label', sess.run(tf.shape(label))) print(train_logical, 'after shuffle_batch ops label_batch', sess.run(tf.shape(label_batch))) return (example_batch, label_batch) # 获取数据 print('Getting/Transforming Data.') # 初始化数据管道获取训练数据和对应标签 images, targets = input_pipeline(batch_size, train_logical=True) # 获取测试数据和对应标签 test_images, test_targets = input_pipeline(batch_size, train_logical=False) sess.close() # True after read_cifar_files ops image [24 24 3] # True after read_cifar_files ops label [1] # True after shuffle_batch ops image [24 24 3] # True after shuffle_batch ops example_batch [128 24 24 3] # True after shuffle_batch ops label [1] # True after shuffle_batch ops label_batch [128 1] # False after read_cifar_files ops image [24 24 3] # False after read_cifar_files ops label [1] # False after shuffle_batch ops image [24 24 3] # False after shuffle_batch ops example_batch [128 24 24 3] # False after shuffle_batch ops label [1] # False after shuffle_batch ops label_batch [128 1]