什么,LEFT JOIN 会变成 JOIN?

前言

在平常开发中,对于 LEFT JOINJOIN 的用法大部分应该都是同样的,若是有两个表 A,B,若是两个表的数据都想要,就使用 JOIN,若是只想要一个表的所有数据,另外一个表数据无关紧要,就使用 LEFT JOIN。(固然这么描述是不太准确的,可是很符合个人平常业务开发)。mysql

MYSQL LEFT JOIN 详解 这篇文章中咱们已经知道了,LEFT JOIN 是本身选择驱动表的,而 JOIN 是 MYSQL 优化器选择驱动表的。算法

那么,当咱们写了一条 LEFT JOIN 语句,MYSQL 会将这条语句优化成 JOIN 语句吗?sql

若是会优化的话,那么何时会优化呢?markdown

事实上,这正是我遇到的一个线上问题。咱们一块儿来看一下。post

问题描述

在咱们线上有这么一条慢 SQL(已处理),执行时间超过 0.5 秒。测试

select 
    count(distinct order.order_id) 
from order force index(shop_id) 
left join `order_extend`
on `order`.`order_id` = `order_extend`.`order_id` 
where `order`.`create_time` >= "2020-08-01 00:00:00" 
and `order`.`create_time` <= "2020-08-01 23:59:59" 
and `order`.`shop_id` = 328449726569069326 
and `order`.`status` = 1 
and `order_extend`.`shop_id` = 328449726569069326 
and `order_extend`.`status` = 1
复制代码

explain 结果以下:优化

+----+-------------+--------------+------------+--------+------------------+----------+---------+------------------------+------+-------------+
| id | select_type | table        | partitions | type   | possible_keys    | key      | key_len | ref                    | rows | Extra       |
+----+-------------+--------------+------------+--------+------------------+----------+---------+------------------------+------+-------------+
|  1 | SIMPLE      | order_extend | NULL       | ref    | order_id,shop_id | shop_id  | 8       | const                  | 3892 | Using where |
|  1 | SIMPLE      | order        | NULL       | eq_ref | shop_id          | shop_id  | 16      | example.order.order_id |    1 | Using where |
+----+-------------+--------------+------------+--------+------------------+----------+---------+------------------------+------+-------------+
2 rows in set, 1 warning (0.00 sec)
复制代码

问题分析

经过 explain,再结合咱们以前讲的 MYSQL 链接查询算法,驱动表为 order_extend,循环 3892 次,说多也很少,说少也很多,被驱动表数据查询类型为 eq_ref,因此应该不会太慢,那么问题就出如今 3892 次上面了,想办法将这个数字降下来便可。ui

等等!为何驱动表是 order_extend?我明明使用的是 LEFT JOIN 啊,按理说驱动表应该是 order 表,为何会变成了 order_extend 了。难道是 MYSQL 内部优化了?spa

顺着这个思路,既然驱动表变了,说明这条 SQL 变为 JOIN 语句了。code

咱们顺着分析 JOIN 语句的方式来分析一下这条语句。(ps:须要对 MYSQL JOIN 内部执行过程有必定的理解,若是不太熟悉,请先移步看这篇文章 → MYSQL 链接查询算法

MYSQL 选择 order_extend 当作驱动表,说明在 where 条件下 order_extend 查询的数据更少,MYSQL 会选择一个小的表当作驱动表。

咱们来分别适用上述的 where 条件单独执行 select count(*) 语句,查看一下大体每一个表都涉及到多少条 SQL 记录。

为了避免影响咱们的分析,咱们使用 explain 语句,这样整个过程就都是估算的结果,模拟一下 MYSQL 分析的过程。

mysql> explain select 
    count(distinct order.order_id) 
from order force index(shop_id) 
where `order`.`create_time` >= "2020-08-01 00:00:00" 
and `order`.`create_time` <= "2020-08-01 23:59:59" 
and `order`.`shop_id` = 328449726569069326 
and `order`.`status` = 1;


+----+-------------+-------+------------+------+--------------------------------+---------+---------+-------+--------+-------------+
| id | select_type | table | partitions | type | possible_keys                  | key     | key_len | ref   | rows   | Extra       |
+----+-------------+-------+------------+------+--------------------------------+---------+---------+-------+--------+-------------+
|  1 | SIMPLE      | order | NULL       | ref  | PRIMARY,shop_id,create_time... | shop_id | 8       | const | 320372 | Using where |
+----+-------------+-------+------------+------+--------------------------------+---------+---------+-------+--------+-------------+
1 row in set, 1 warning (0.00 sec)
复制代码
select 
    count(distinct order_extend.order_id) 
and `order_extend`.`shop_id` = 328449726569069326 
and `order_extend`.`status` = 1

+----+-------------+--------------+------------+------+------------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table        | partitions | type | possible_keys    | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+--------------+------------+------+------------------+---------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | order_extend | NULL       | ref  | order_id,shop_id | shop_id | 8       | const | 3892 |    10.00 | Using where |
+----+-------------+--------------+------------+------+------------------+---------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
复制代码

能够看到,在上述 where 条件下,order_extend 表只会查询 3892 条数据,而 order 表会查询 320372 条数据,因此 order_extend 表当驱动表是彻底没有问题的。

那么咱们再来看看为何 order 表会扫描这么多数据呢?在 2020-08-01 这一天可能也没有这么多数据啊。那么这个时候咱们应该会很容易的想到,是强制走索引的问题,由于在上述查询语句中,咱们强制走了 shop_id 索引,这个索引可能不是最优索引,咱们把 force index(shop_id) 去掉再试试看

mysql> explain select 
    count(distinct order.order_id) 
where `order`.`create_time` >= "2020-08-01 00:00:00" 
and `order`.`create_time` <= "2020-08-01 23:59:59" 
and `order`.`shop_id` = 328449726569069326 
and `order`.`status` = 1;


+----+-------------+-------+------------+------+---------------+-------------+---------+-------+-------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key         | key_len | ref   | rows  | filtered | Extra                    |
+----+-------------+-------+------------+------+---------------+-------------+---------+-------+-------+----------+--------------------------+
|  1 | SIMPLE      | order | NULL       | ref  | create_time   | create_time | 8       | const | <3892 |    10.00 | Using where; Using index |
+----+-------------+-------+------------+------+---------------+-------------+---------+-------+-------+----------+--------------------------+
1 row in set, 1 warning (0.00 sec)
复制代码

能够看到,若是不强制走 shop_id 索引的话,走 create_time 索引的话,扫描的行数会更少,假设说 100 行,只会循环 100 次,扫描 100 x 3892 行数据,而以前的总共要循环 3892 次,扫描 3892 x 300000 行数据。

问题结论

因此最终的这条慢 SQL 的缘由肯定了,是由于咱们强制走 shop_id 索引,致使 MYSQL 扫描的行数更多了,咱们只须要去掉强制走索引便可,大多数时间 MYSQL 都会选择正确的索引,因此强制使用索引的时候必定要当心谨慎。

问题延伸

SQL 慢的问题咱们已经解决了,咱们再来回顾一下文章开头的问题:LEFT JOIN 会被优化为 JOIN 吗?

答案是会的。那么何时会出现这种状况呢?

咱们再来回顾一下 MYSQL LEFT JOIN 详解 文章中的内容。

为了方便阅读,咱们将部份内容粘贴出来。

mysql> select * from goods left join goods_category on goods.category_id = goods_category.category_id;
+----------+------------+-------------+-------------+---------------+
| goods_id | goods_name | category_id | category_id | category_name |
+----------+------------+-------------+-------------+---------------+
|        1 | 男鞋1      |           1 |           1 | 鞋            |
|        2 | 男鞋2      |           1 |           1 | 鞋            |
|        3 | 男鞋3      |           3 |           3 | 羽绒服        |
|        4 | T恤1       |           2 |           2 | T恤           |
|        5 | T恤2       |           2 |           2 | T恤           |
+----------+------------+-------------+-------------+---------------+
5 rows in set (0.00 sec)

mysql> select * from goods left join goods_category on goods.category_id = goods_category.category_id;
+----------+------------+-------------+-------------+---------------+
| goods_id | goods_name | category_id | category_id | category_name |
+----------+------------+-------------+-------------+---------------+
|        1 | 男鞋1      |           1 |           1 | 鞋            |
|        2 | 男鞋2      |           1 |           1 | 鞋            |
|        3 | 男鞋3      |           4 |        NULL | NULL          |
|        4 | T恤1       |           2 |           2 | T恤           |
|        5 | T恤2       |           2 |           2 | T恤           |
+----------+------------+-------------+-------------+---------------+
5 rows in set (0.00 sec)

mysql> select * from goods g left join goods_category c on (g.category_id = c.category_id and g.goods_name = 'T恤1');
+----------+------------+-------------+-------------+---------------+
| goods_id | goods_name | category_id | category_id | category_name |
+----------+------------+-------------+-------------+---------------+
|        1 | 男鞋1      |           1 |        NULL | NULL          |
|        2 | 男鞋2      |           1 |        NULL | NULL          |
|        3 | 男鞋3      |           4 |        NULL | NULL          |
|        4 | T恤1       |           2 |           2 | T恤           |
|        5 | T恤2       |           2 |        NULL | NULL          |
+----------+------------+-------------+-------------+---------------+
5 rows in set (0.00 sec)

mysql> select * from goods g left join goods_category c on (g.category_id = c.category_id and c.category_name = 'T恤');
+----------+------------+-------------+-------------+---------------+
| goods_id | goods_name | category_id | category_id | category_name |
+----------+------------+-------------+-------------+---------------+
|        1 | 男鞋1      |           1 |        NULL | NULL          |
|        2 | 男鞋2      |           1 |        NULL | NULL          |
|        3 | 男鞋3      |           4 |        NULL | NULL          |
|        4 | T恤1       |           2 |           2 | T恤           |
|        5 | T恤2       |           2 |           2 | T恤           |
+----------+------------+-------------+-------------+---------------+
5 rows in set (0.00 sec)

mysql> select * from goods g left join goods_category c on (g.category_id = c.category_id) where c.category_name = '鞋';
+----------+------------+-------------+-------------+---------------+
| goods_id | goods_name | category_id | category_id | category_name |
+----------+------------+-------------+-------------+---------------+
|        1 | 男鞋1      |           1 |           1 | 鞋            |
|        2 | 男鞋2      |           1 |           1 | 鞋            |
+----------+------------+-------------+-------------+---------------+
2 rows in set (0.00 sec)

mysql> select * from goods g left join goods_category c on (g.category_id = c.category_id) where g.goods_name = 'T恤1';
+----------+------------+-------------+-------------+---------------+
| goods_id | goods_name | category_id | category_id | category_name |
+----------+------------+-------------+-------------+---------------+
|        4 | T恤1       |           2 |           2 | T恤           |
+----------+------------+-------------+-------------+---------------+
1 row in set (0.00 sec)

mysql> select * from goods g left join goods_category c on (g.category_id = c.category_id and g.goods_name = 'T恤2') where g.goods_name = 'T恤1';
+----------+------------+-------------+-------------+---------------+
| goods_id | goods_name | category_id | category_id | category_name |
+----------+------------+-------------+-------------+---------------+
|        4 | T恤1       |           2 |        NULL | NULL          |
+----------+------------+-------------+-------------+---------------+
1 row in set (0.00 sec)
复制代码

咱们能够看到,当 where 条件中有被驱动表的条件时,查询结果是和 JOIN 的结果是一致的,无 NULL 值的出现。

因此,咱们能够想到,LEFT JOIN 优化为 JOIN 的条件为:where 条件中有被驱动表的非空条件时LEFT JOIN 等价于 JOIN

这不难理解,LEFT JOIN 会返回驱动表全部数据,当有被驱动表的 where 条件时,会过滤掉 NULL 的值,此时和 JOIN 的结果一致了,那么 MYSQL 会选择将 LEFT JOIN 优化为 JOIN,这样就能够本身选择驱动表了。

实例测试

咱们再来编写一个测试用例来验证一下咱们的结论。

CREATE TABLE `A` (
  `id` int(11) auto_increment,
  `a` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `a` (`a`)
) ENGINE=InnoDB;

delimiter ;;
create procedure idata()
begin
  declare i int;
  set i=1;
  while(i<=100)do
    insert into A (`a`) values(i);
    set i=i+1;
  end while;
end;;
delimiter ;
call idata();

CREATE TABLE `B` (
  `id` int(11) auto_increment,
  `b` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `b` (`b`)
) ENGINE=InnoDB;

delimiter ;;
create procedure idata()
begin
  declare i int;
  set i=1;
  while(i<=100)do
    insert into B (`b`) values(i);
    set i=i+1;
  end while;
end;;
delimiter ;
call idata();
复制代码

咱们建立了两张如出一辙的表,每一个表中有 100 条数据,而后咱们执行一下 LEFT JOIN 语句。

mysql> explain select * from A left join B on A.id = B.id where A.a <= 100;
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
| id | select_type | table | partitions | type   | possible_keys | key     | key_len | ref           | rows | filtered | Extra                    |
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
|  1 | SIMPLE      | A     | NULL       | index  | a             | a       | 5       | NULL          |  100 |   100.00 | Using where; Using index |
|  1 | SIMPLE      | B     | NULL       | eq_ref | PRIMARY       | PRIMARY | 4       | example2.A.id |    1 |   100.00 | NULL                     |
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
2 rows in set, 1 warning (0.00 sec)
复制代码
mysql> explain select * from A left join B on A.id = B.id where A.a <= 100 and B.b <= 50;
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
| id | select_type | table | partitions | type   | possible_keys | key     | key_len | ref           | rows | filtered | Extra                    |
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
|  1 | SIMPLE      | B     | NULL       | range  | PRIMARY,b     | b       | 5       | NULL          |   50 |   100.00 | Using where; Using index |
|  1 | SIMPLE      | A     | NULL       | eq_ref | PRIMARY,a     | PRIMARY | 4       | example2.B.id |    1 |   100.00 | Using where              |
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
2 rows in set, 1 warning (0.00 sec)
复制代码
mysql> explain select * from A left join B on A.id = B.id where A.a <= 100 and B.b <= 100;
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
| id | select_type | table | partitions | type   | possible_keys | key     | key_len | ref           | rows | filtered | Extra                    |
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
|  1 | SIMPLE      | A     | NULL       | index  | PRIMARY,a     | a       | 5       | NULL          |  100 |   100.00 | Using where; Using index |
|  1 | SIMPLE      | B     | NULL       | eq_ref | PRIMARY,b     | PRIMARY | 4       | example2.A.id |    1 |   100.00 | Using where              |
+----+-------------+-------+------------+--------+---------------+---------+---------+---------------+------+----------+--------------------------+
2 rows in set, 1 warning (0.00 sec)
复制代码

从上面看,给 B 表增长了 where 条件以后,若是 B 表扫描的行数更少,那么是有可能换驱动表的,这也说明了,LEFT JOIN 语句被优化成了 JOIN 语句。

总结

上面咱们分析了一条慢 SQL 的问题,分析的过程涉及到了不少知识点,但愿你们能够认真研究一下。

同时咱们得出了一条结论:当有被驱动表的非空 where 条件时,MYSQL 会将 LEFT JOIN 语句优化为 JOIN 语句

相关文章
相关标签/搜索