Go语言标准库 - net/httpgolang
在学习Go语言有一个很好的起点,Go语言官方文档很详细,今天咱们学习的Go Web服务器的搭建就须要用到Go语言官方提供的标准库 net/http,经过http包提供了HTTP客户端和服务端的实现。同时使用这个包能很简单地对web的路由,静态文件,模版,cookie等数据进行设置和操做。若是对http概念不是太清楚的朋友能够自行google。web
package main import ( "fmt" "net/http" "strings" "log" ) func sayhelloName(w http.ResponseWriter, r *http.Request) { r.ParseForm() //解析参数,默认是不会解析的 fmt.Println(r.Form) //这些信息是输出到服务器端的打印信息 fmt.Println("path", r.URL.Path) fmt.Println("scheme", r.URL.Scheme) fmt.Println(r.Form["url_long"]) for k, v := range r.Form { fmt.Println("key:", k) fmt.Println("val:", strings.Join(v, "")) } fmt.Fprintf(w, "Hello Wrold!") //这个写入到w的是输出到客户端的 } func main() { http.HandleFunc("/", sayhelloName) //设置访问的路由 err := http.ListenAndServe(":9090", nil) //设置监听的端口 if err != nil { log.Fatal("ListenAndServe: ", err) } }
上面的代码咱们在IDE中编译后并运行成功后,这个时侯咱们就能够在9090端口监听http连接请求了
页面请求效果如图:
代码运行结果如图:
这个时侯若是咱们在浏览器地址后面加一些参数试试:http://localhost:9090?url_long=111&url_long=222,看看浏览器中输出什么?服务器端输出的又是什么?spring
咱们看到了上面的代码,要编写一个Web服务器是否是很简单,只要调用http包的两个函数就能够了。
咱们看到Go经过简单的几行代码就已经运行起来一个Web服务了,并且这个Web服务内部有支持高并发的特性。如今Web服务已经搭建完成了,那咱们如今来了解一个这个服务是怎么运行起来的呢?api
Web工做方式的几个概念浏览器
分析http包运行机制服务器
这个过程咱们须要清楚如下三个问题,则就清楚Go是如何让Web运行起来了cookie
Go http包的源码,这里咱们能够看到整个http处理过程网络
网络发展,不少网络应用都是构建再 HTTP 服务基础之上。HTTP 协议从诞生到如今,发展从1.0,1.1到2.0也不断再进步。除去细节,理解 HTTP 构建的网络应用只要关注两个端---客户端(clinet)和服务端(server),两个端的交互来自 clinet 的 request,以及server端的response。所谓的http服务器,主要在于如何接受 clinet 的 request,并向client返回response。并发
接收request的过程当中,最重要的莫过于路由(router),即实现一个Multiplexer器。Go中既可使用内置的mutilplexer --- DefautServeMux,也能够自定义。Multiplexer路由的目的就是为了找处处理器函数(handler),后者将对request进行处理,同时构建response。框架
简单总结就是这个流程为:
Clinet -> Requests -> [Multiplexer(router) -> handler -> Response -> Clinet
所以,理解go中的http服务,最重要就是要理解Multiplexer和handler,Golang中的Multiplexer基于ServeMux结构,同时也实现了Handler接口。
对于handler,若是有从事Java开发的朋友,你若是了解spring框架,应该据说过这个词,这里的handler和spring框架里的handler听上去很类似,一样是做为一个方法的载体,但他们仍是不一样的。为了更好的说明问题,本文约定了以下规则:
handler处理器和handler对象的差异在于,一个是函数,另一个是结构,它们都有实现了ServeHTTP方法。不少状况下它们的功能相似,下文就使用统称为handler。这算是Golang经过接口实现的类动态类型吧。
Golang没有继承,类多态的方式能够经过接口实现。所谓接口则是定义声明了函数签名,任何结构只要实现了与接口函数签名相同的方法,就等同于实现了接口。go的http服务都是基于handler进行处理。
type Handler interface { ServeHTTP(ResponseWriter, *Request) }
任何结构体,只要实现了ServeHTTP方法,这个结构就能够称之为handler对象。ServeMux会使用handler并调用其ServeHTTP方法处理请求并返回响应。
了解了Handler以后,再看ServeMux。ServeMux的源码很简单:
type ServeMux struct { mu sync.RWMutex m map[string]muxEntry hosts bool } type muxEntry struct { explicit bool h Handler pattern string }
ServeMux结构中最重要的字段为m,这是一个map,key是一些url模式,value是一个muxEntry结构,后者里定义存储了具体的url模式和handler。
固然,所谓的ServeMux也实现了ServeHTTP接口,也算是一个handler,不过ServeMux的ServeHTTP方法不是用来处理request和respone,而是用来找到路由注册的handler,后面再作解释。
除了ServeMux和Handler,还有一个结构Server须要了解。从http.ListenAndServe的源码能够看出,它建立了一个server对象,并调用server对象的ListenAndServe方法:
func ListenAndServe(addr string, handler Handler) error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServe() }
查看server的结构以下:
type Server struct { Addr string Handler Handler ReadTimeout time.Duration WriteTimeout time.Duration TLSConfig *tls.Config MaxHeaderBytes int TLSNextProto map[string]func(*Server, *tls.Conn, Handler) ConnState func(net.Conn, ConnState) ErrorLog *log.Logger disableKeepAlives int32 nextProtoOnce sync.Once nextProtoErr error }
server结构存储了服务器处理请求常见的字段。其中Handler字段也保留Handler接口。若是Server接口没有提供Handler结构对象,那么会使用DefautServeMux作multiplexer,后面再作分析。
建立一个http服务,大体须要经历两个过程,首先须要注册路由,即提供url模式和handler函数的映射,其次就是实例化一个server对象,并开启对客户端的监听。
再看gohttp服务的代码
http.HandleFunc("/", indexHandler)
便是注册路由。
http.ListenAndServe("127.0.0.1:8000", nil) 或者: server := &Server{Addr: addr, Handler: handler} server.ListenAndServe()
阅读框架源码是学习的好方式,一般阅读也有两个方法,一是不求甚解,框架的主要流程要清晰,别的细枝末节,若是尚不能理解做者的用意,能够先忽略,没必要立刻深究;其次,庖丁解牛,对于做者想要表达的主要流程,必定要明确,执行的逻辑和结构。二者看起来略矛盾,其实否则。大致而言就是对主流程要清晰,主流程之外的细节须要先忽略。最简单实践方式就是,看不懂的就先放一边。直到全部的都看不懂,再回去看之前不懂的部分,搞懂为止。下面就查看http是如何注册路由。
net/http包暴露的注册路由的api很简单,http.HandleFunc选取了DefaultServeMux做为multiplexer:
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { DefaultServeMux.HandleFunc(pattern, handler) }
那么什么是DefaultServeMux呢?实际上,DefaultServeMux是ServeMux的一个实例。固然http包也提供了NewServeMux方法建立一个ServeMux实例,默认则建立一个DefaultServeMux:
// NewServeMux allocates and returns a new ServeMux. func NewServeMux() *ServeMux { return new(ServeMux) } // DefaultServeMux is the default ServeMux used by Serve. var DefaultServeMux = &defaultServeMux var defaultServeMux ServeMux
注意,go建立实例的过程当中,也可使用指针方式,即
type Server struct{}
server := Server{}
和下面的同样均可以建立Server的实例
var DefalutServer Server
var server = &DefalutServer
所以DefaultServeMux的HandleFunc(pattern, handler)方法实际是定义在ServeMux下的:
// HandleFunc registers the handler function for the given pattern. func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { mux.Handle(pattern, HandlerFunc(handler)) }
上述代码中,HandlerFunc是一个函数类型(若是将它上面的注释翻译过来,就是HandleFunc会为给定的模式注册处理程序函数,咱们就能够为会根据路由地址注册相应的服务),同时实现了Handler接口的ServeHTTP方法。使用HandlerFunc类型包装一下路由定义的indexHandler函数,其目的就是为了让这个函数也实现ServeHTTP方法,即转变成一个handler处理器(函数)。
type HandlerFunc func(ResponseWriter, *Request) func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { f(w, r) }
一旦这样作了,就意味着咱们的 indexHandler 函数也有了ServeHTTP方法。
此外,ServeMux的Handle方法,将会对pattern和handler函数作一个map映射:
// Handle registers the handler for the given pattern. // If a handler already exists for pattern, Handle panics. func (mux *ServeMux) Handle(pattern string, handler Handler) { mux.mu.Lock() defer mux.mu.Unlock() if pattern == "" { panic("http: invalid pattern " + pattern) } if handler == nil { panic("http: nil handler") } if mux.m[pattern].explicit { panic("http: multiple registrations for " + pattern) } if mux.m == nil { mux.m = make(map[string]muxEntry) } mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern} if pattern[0] != '/' { mux.hosts = true } // Helpful behavior: // If pattern is /tree/, insert an implicit permanent redirect for /tree. // It can be overridden by an explicit registration. n := len(pattern) if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit { // If pattern contains a host name, strip it and use remaining // path for redirect. path := pattern if pattern[0] != '/' { // In pattern, at least the last character is a '/', so // strings.Index can't be -1. path = pattern[strings.Index(pattern, "/"):] } url := &url.URL{Path: path} mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern} } }
因而可知,Handle函数的主要目的在于把handler和pattern模式绑定到map[string]muxEntry的map上,其中muxEntry保存了更多pattern和handler的信息,还记得前面讨论的Server结构吗?Server的m字段就是map[string]muxEntry这样一个map。
此时,pattern和handler的路由注册完成。接下来就是如何开始server的监听,以接收客户端的请求。
注册好路由以后,启动web服务还须要开启服务器监听。http的ListenAndServer方法中能够看到建立了一个Server对象,并调用了Server对象的同名方法:
func ListenAndServe(addr string, handler Handler) error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServe() } func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServeTLS(certFile, keyFile) }
Server的ListenAndServe方法中,会初始化监听地址Addr,同时调用Listen方法设置监听。最后将监听的TCP对象传入Serve方法:
func (srv *Server) Serve(l net.Listener) error { defer l.Close() if fn := testHookServerServe; fn != nil { fn(srv, l) } var tempDelay time.Duration // how long to sleep on accept failure if err := srv.setupHTTP2_Serve(); err != nil { return err } srv.trackListener(l, true) defer srv.trackListener(l, false) baseCtx := context.Background() // base is always background, per Issue 16220 ctx := context.WithValue(baseCtx, ServerContextKey, srv) for { rw, e := l.Accept() if e != nil { select { case <-srv.getDoneChan(): return ErrServerClosed default: } if ne, ok := e.(net.Error); ok && ne.Temporary() { if tempDelay == 0 { tempDelay = 5 * time.Millisecond } else { tempDelay *= 2 } if max := 1 * time.Second; tempDelay > max { tempDelay = max } srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay) time.Sleep(tempDelay) continue } return e } tempDelay = 0 c := srv.newConn(rw) c.setState(c.rwc, StateNew) // before Serve can return go c.serve(ctx) } }
监听开启以后,一旦客户端请求到底,go就开启一个协程处理请求,主要逻辑都在serve方法之中。
serve方法比较长,其主要职能就是,建立一个上下文对象,而后调用Listener的Accept方法用来 获取链接数据并使用newConn方法建立链接对象。最后使用goroutein协程的方式处理链接请求。由于每个链接都开起了一个协程,请求的上下文都不一样,同时又保证了go的高并发。serve也是一个长长的方法:
// Serve a new connection. func (c *conn) serve(ctx context.Context) { c.remoteAddr = c.rwc.RemoteAddr().String() ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) defer func() { if err := recover(); err != nil && err != ErrAbortHandler { const size = 64 << 10 buf := make([]byte, size) buf = buf[:runtime.Stack(buf, false)] c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) } if !c.hijacked() { c.close() c.setState(c.rwc, StateClosed) } }() if tlsConn, ok := c.rwc.(*tls.Conn); ok { if d := c.server.ReadTimeout; d != 0 { c.rwc.SetReadDeadline(time.Now().Add(d)) } if d := c.server.WriteTimeout; d != 0 { c.rwc.SetWriteDeadline(time.Now().Add(d)) } if err := tlsConn.Handshake(); err != nil { c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) return } c.tlsState = new(tls.ConnectionState) *c.tlsState = tlsConn.ConnectionState() if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) { if fn := c.server.TLSNextProto[proto]; fn != nil { h := initNPNRequest{tlsConn, serverHandler{c.server}} fn(c.server, tlsConn, h) } return } } // HTTP/1.x from here on. ctx, cancelCtx := context.WithCancel(ctx) c.cancelCtx = cancelCtx defer cancelCtx() c.r = &connReader{conn: c} c.bufr = newBufioReader(c.r) c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) for { w, err := c.readRequest(ctx) if c.r.remain != c.server.initialReadLimitSize() { // If we read any bytes off the wire, we're active. c.setState(c.rwc, StateActive) } if err != nil { const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n" if err == errTooLarge { // Their HTTP client may or may not be // able to read this if we're // responding to them and hanging up // while they're still writing their // request. Undefined behavior. const publicErr = "431 Request Header Fields Too Large" fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) c.closeWriteAndWait() return } if isCommonNetReadError(err) { return // don't reply } publicErr := "400 Bad Request" if v, ok := err.(badRequestError); ok { publicErr = publicErr + ": " + string(v) } fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) return } // Expect 100 Continue support req := w.req if req.expectsContinue() { if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { // Wrap the Body reader with one that replies on the connection req.Body = &expectContinueReader{readCloser: req.Body, resp: w} } } else if req.Header.get("Expect") != "" { w.sendExpectationFailed() return } c.curReq.Store(w) if requestBodyRemains(req.Body) { registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) } else { if w.conn.bufr.Buffered() > 0 { w.conn.r.closeNotifyFromPipelinedRequest() } w.conn.r.startBackgroundRead() } // 一个Http不能同时又多个处理请求,只有服务器响应了当前请求后才能处理其余请求. serverHandler{c.server}.ServeHTTP(w, w.req) w.cancelCtx() if c.hijacked() { return } w.finishRequest() if !w.shouldReuseConnection() { if w.requestBodyLimitHit || w.closedRequestBodyEarly() { c.closeWriteAndWait() } return } c.setState(c.rwc, StateIdle) c.curReq.Store((*response)(nil)) if !w.conn.server.doKeepAlives() { // We're in shutdown mode. We might've replied // to the user without "Connection: close" and // they might think they can send another // request, but such is life with HTTP/1.1. return } if d := c.server.idleTimeout(); d != 0 { c.rwc.SetReadDeadline(time.Now().Add(d)) if _, err := c.bufr.Peek(4); err != nil { return } } c.rwc.SetReadDeadline(time.Time{}) } }
尽管serve很长,里面的结构和逻辑仍是很清晰的,使用defer定义了函数退出时,链接关闭相关的处理。而后就是读取链接的网络数据,并处理读取完毕时候的状态。接下来就是调用serverHandler{c.server}.ServeHTTP(w, w.req)
方法处理请求了。最后就是请求处理完毕的逻辑。serverHandler是一个重要的结构,它近有一个字段,即Server结构,同时它也实现了Handler接口方法ServeHTTP,并在该接口方法中作了一个重要的事情,初始化multiplexer路由多路复用器。若是server对象没有指定Handler,则使用默认的DefaultServeMux做为路由Multiplexer。并调用初始化Handler的ServeHTTP方法。
type serverHandler struct { srv *Server } func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { handler := sh.srv.Handler if handler == nil { handler = DefaultServeMux } if req.RequestURI == "*" && req.Method == "OPTIONS" { handler = globalOptionsHandler{} } handler.ServeHTTP(rw, req) }
这里DefaultServeMux的ServeHTTP方法其实也是定义在ServeMux结构中的,相关代码以下:
// ServeHTTP dispatches the request to the handler whose // pattern most closely matches the request URL. func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { if r.RequestURI == "*" { if r.ProtoAtLeast(1, 1) { w.Header().Set("Connection", "close") } w.WriteHeader(StatusBadRequest) return } h, _ := mux.Handler(r) h.ServeHTTP(w, r) } func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { // CONNECT requests are not canonicalized. if r.Method == "CONNECT" { return mux.handler(r.Host, r.URL.Path) } // All other requests have any port stripped and path cleaned // before passing to mux.handler. host := stripHostPort(r.Host) path := cleanPath(r.URL.Path) if path != r.URL.Path { _, pattern = mux.handler(host, path) url := *r.URL url.Path = path return RedirectHandler(url.String(), StatusMovedPermanently), pattern } return mux.handler(host, r.URL.Path) } // handler is the main implementation of Handler. // The path is known to be in canonical form, except for CONNECT methods. func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) { mux.mu.RLock() defer mux.mu.RUnlock() // Host-specific pattern takes precedence over generic ones if mux.hosts { h, pattern = mux.match(host + path) } if h == nil { h, pattern = mux.match(path) } if h == nil { h, pattern = NotFoundHandler(), "" } return } // Find a handler on a handler map given a path string. // Most-specific (longest) pattern wins. func (mux *ServeMux) match(path string) (h Handler, pattern string) { // Check for exact match first. v, ok := mux.m[path] if ok { return v.h, v.pattern } // Check for longest valid match. var n = 0 for k, v := range mux.m { if !pathMatch(k, path) { continue } if h == nil || len(k) > n { n = len(k) h = v.h pattern = v.pattern } } return }
mux的ServeHTTP方法经过调用其Handler方法寻找注册到路由上的handler函数,并调用该函数的ServeHTTP方法,本例则是IndexHandler函数。
mux的Handler方法对URL简单的处理,而后调用handler方法,后者会建立一个锁,同时调用match方法返回一个handler和pattern。
在match方法中,mux的m字段是map[string]muxEntry图,后者存储了pattern和handler处理器函数,所以经过迭代m寻找出注册路由的patten模式与实际url匹配的handler函数并返回。
返回的结构一直传递到mux的ServeHTTP方法,接下来调用handler函数的ServeHTTP方法,即IndexHandler函数,而后把response写到http.RequestWirter对象返回给客户端。
上述函数运行结束即serverHandler{c.server}.ServeHTTP(w, w.req)
运行结束。接下来就是对请求处理完毕以后上但愿和链接断开的相关逻辑。
至此,Golang中一个完整的http服务介绍完毕,包括注册路由,开启监听,处理链接,路由处理函数。
多数的web应用基于HTTP协议,客户端和服务器经过request-response的方式交互。一个server并不可少的两部分莫过于路由注册和链接处理。Golang经过一个ServeMux实现了的multiplexer路由多路复用器来管理路由。同时提供一个Handler接口提供ServeHTTP用来实现handler处理其函数,后者能够处理实际request并构造response。
ServeMux和handler处理器函数的链接桥梁就是Handler接口。ServeMux的ServeHTTP方法实现了寻找注册路由的handler的函数,并调用该handler的ServeHTTP方法。ServeHTTP方法就是真正处理请求和构造响应的地方。
回顾go的http包实现http服务的流程,可见大师们的编码设计之功力。学习有利提升自身的代码逻辑组织能力。更好的学习方式除了阅读,就是实践,接下来,咱们将着重讨论来构建http服务。尤为是构建http中间件函数。