咱们常常听到一些人说"把WHERE条件里的列都加上索引",其实这个建议很是错误。在多个列上创建单独的索引大部分状况下并不能提升MySQL的查询性能。MySQL在5.0以后引入了一种叫“索引合并”(index merge)的策略,必定程度上可使用表上的多个单列索引来定位指定的行。可是当服务器对多个索引作联合操做时,一般须要耗费大量CPU和内存资源在算法的缓存、排序和合并操做上,特别是当其中有些索引的选择性不高,须要合并扫描大量的数据的时候。
这个时候,咱们须要一个多列索引。mysql
建立一个测试数据库和数据表:算法
CREATE DATABASE IF NOT EXISTS db_test default charset utf8 COLLATE utf8_general_ci; use db_test; CREATE TABLE payment ( id INT UNSIGNED NOT NULL AUTO_INCREMENT, staff_id INT UNSIGNED NOT NULL, customer_id INT UNSIGNED NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
利用存储过程插入1000w行随机数据(表引擎能够先设置为MyISAM,而后改成InnoDB):sql
DROP PROCEDURE IF EXISTS add_payment; DELIMITER // create PROCEDURE add_payment(in num INT) BEGIN DECLARE rowid INT DEFAULT 0; SET @exesql = 'INSERT INTO payment(staff_id, customer_id) values (?, ?)'; WHILE rowid < num DO SET @staff_id = (1 + FLOOR(5000*RAND()) ); SET @customer_id = (1 + FLOOR(500000*RAND())); SET rowid = rowid + 1; prepare stmt FROM @exesql; EXECUTE stmt USING @staff_id, @customer_id; END WHILE; END // DELIMITER ;
或者你能够直接下载使用个人测试数据(也是利用上面的存储过程,可是我以后调整了数据):
测试数据数据库
添加两个单列索引(执行过程要花点时间,建议分开一句一句执行):缓存
ALTER TABLE `payment` ADD INDEX idx_customer_id(`customer_id`); ALTER TABLE `payment` ADD INDEX idx_staff_id(`staff_id`);
查询一条数据利用到两个列的索引:服务器
select count(*) from payment where staff_id = 2205 AND customer_id = 93112;
查看执行计划:性能
mysql> explain select count(*) from payment where staff_id = 2205 AND customer_id = 93112; +----+-------------+---------+-------------+------------------------------+------------------------------+---------+------+-------+-------------------------------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+---------+-------------+------------------------------+------------------------------+---------+------+-------+-------------------------------------------------------------------------+ | 1 | SIMPLE | payment | index_merge | idx_customer_id,idx_staff_id | idx_staff_id,idx_customer_id | 4,4 | NULL | 11711 | Using intersect(idx_staff_id,idx_customer_id); Using where; Using index | +----+-------------+---------+-------------+------------------------------+------------------------------+---------+------+-------+-------------------------------------------------------------------------+ 1 row in set (0.00 sec)
能够看到type是index_merge,Extra中提示Using intersect(idx_staff_id,idx_customer_id);
这即是索引合并,利用两个索引,而后合并两个结果(取交集或者并集或者二者都有)
查询结果:测试
mysql> select count(*) from payment where staff_id = 2205 AND customer_id = 93112 ; +----------+ | count(*) | +----------+ | 178770 | +----------+ 1 row in set (0.12 sec)
而后删除以上索引,添加多列索引:code
ALTER TABLE payment DROP INDEX idx_customer_id; ALTER TABLE payment DROP INDEX idx_staff_id; ALTER TABLE `payment` ADD INDEX idx_customer_id_staff_id(`customer_id`, `staff_id`);
注意,多列索引很关注索引列的顺序(由于customer_id的选择性更大,因此把它放前面)
查询:排序
mysql> select count(*) from payment where staff_id = 2205 AND customer_id = 93112; +----------+ | count(*) | +----------+ | 178770 | +----------+ 1 row in set (0.05 sec)
发现多列索引加快的查询(这里数据量仍是较小,更大的时候比较更明显)
多列索引的列顺序相当重要,如何选择索引的列顺序有一个经验法则:将选择性最高的列放到索引最前列(可是不是绝对的)。经验法则考虑全局的基数和选择性,而不是某个具体的查询:
mysql> select count(DISTINCT staff_id) / count(*) AS staff_id_selectivity, count(DISTINCT customer_id) / count(*) AS customer_id_selectivity, count(*) from payment\G; *************************** 1. row *************************** staff_id_selectivity: 0.0005 customer_id_selectivity: 0.0500 count(*): 10000000 1 row in set (6.29 sec)
customer_id的选择性更高,因此将它做为索引列的第一位。
多列索引只能匹配最左前缀,也就是说:
select * from payment where staff_id = 2205 AND customer_id = 93112 ; select count(*) from payment where customer_id = 93112 ;
能够利用索引,可是
select * from payment where staff_id = 2205 ;
不能利用索引。