Ubuntu 16.04 安装 CUDA、CUDNN 和 GPU 版本的 TensorFlow 通常步骤总结

1. 安装显卡驱动

安装显卡驱动网上有各类各样的方法,甚至有的还须要更改一些配置文件切换到命令行终端模式进行操做,然而就我屡次安装驱动的经验来看,我历来没有这么费劲过。在 Ubuntu 系统中的 System Settings -> Software & Updates -> Additional Drivers 安装相应的显卡和CPU驱动,重启后在 System Settings -> Details 中能够看到本身的显卡型号则说明驱动已经安装成功,此时在命令行下输入 nvidia-smi 也能够看到显卡的相关信息。python

2. 安装 CUDA

  • CUDA 官网 下载合适版本的 runfile 文件(强烈推荐), 而后在终端运行 sudo sh cuda_filename.run,除了在询问你是否要安装驱动的时候选择 No(上面已安装过),其余均可以选择 Yes。
  • 在家目录打开终端运行 sudo gedit .bashrc,在文件末尾添加相应的路径。
export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PA
  • 终端运行 source .bashrc
  • 终端运行 nvcc -V ,出现相关 CUDA 版本信息说明安装。

3. 安装 CUDNN

  • 解压对应版本的 CUDNN 压缩包,复制相应文件到相关路径。
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

4. 安装 Python 依赖库和 TensorFlow

因为 Ubuntu 默认的 Python 版本是 2.7,若更改了系统默认的 Python 版本,安装软件时可能会遇到一些依赖问题,而如今主流 Python 都是 3.x 版本的,所以为了使用 Python3 同时又不改变系统默认 Python 版本采用 pip 安装比较好。bash

sudo apt-get install python3-pip
sudo pip3 install numpy,jupyter,matplotlib
sudo pip3 install tensorflow-gpu
安装速度慢的能够尝试一下国内的豆瓣源
sudo pip3 install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com numpy(等 python 库)

5. 一些常见问题

  • 找不到 **.so 文件,先搜索库文件所在路径,终端运行 sudo gedit /etc/ld.so.conf 添加库文件所在路径,而后 sudo ldconfig
  • No module named ** ,sudo apt-get install/pip3 install **

获取更多精彩,请关注「seniusen」!
这里写图片描述spa

相关文章
相关标签/搜索