步骤:
1. JDK安装(不会的戳这)
2. 下载hadoop2.5.2.tar.gz,或者自行去百度下载。
3. 下载hadooponwindows-master.zip【**能支持在windows运行hadoop的工具】html
下载hadoop2.5.2.tar.gz ,并解压到你想要的目录下,我放在D:\dev\hadoop-2.5.2
java
1.windows环境变量配置node
右键单击个人电脑 –>属性 –>高级环境变量配置 –>高级选项卡 –>环境变量 –> 单击新建HADOOP_HOME,以下图
web
2.接着编辑环境变量path,将hadoop的bin目录加入到后面;apache
<configuration> <property> <name>hadoop.tmp.dir</name> <value>/D:/dev/hadoop-2.5.2/workplace/tmp</value> </property> <property> <name>dfs.name.dir</name> <value>/D:/dev/hadoop-2.5.2/workplace/name</value> </property> <property> <name>fs.default.name</name> <value>hdfs://localhost:9000</value> </property> </configuration>
2.编辑“D:\dev\hadoop-2.5.2\etc\hadoop”目录下的mapred-site.xml(没有就将mapred-site.xml.template重命名为mapred-site.xml)文件,粘贴一下内容并保存;windows
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapred.job.tracker</name> <value>hdfs://localhost:9001</value> </property> </configuration>
3.编辑“D:\dev\hadoop-2.5.2\etc\hadoop”目录下的hdfs-site.xml文件,粘贴如下内容并保存。请自行建立data目录,在这里我是在HADOOP_HOME目录下建立了workplace/data目录;安全
<configuration> <!-- 这个参数设置为1,由于是单机版hadoop --> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.data.dir</name> <value>/D:/dev/hadoop-2.5.2/workplace/data</value> </property> </configuration>
4.编辑“D:\dev\hadoop-2.5.2\etc\hadoop”目录下的yarn-site.xml文件,粘贴如下内容并保存;app
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name> <value>org.apache.hadoop.mapred.ShuffleHandler</value> </property> </configuration>
5.编辑“D:\dev\hadoop-2.5.2\etc\hadoop”目录下的hadoop-env.cmd文件,将JAVA_HOME用 @rem注释掉,编辑为JAVA_HOME的路径,而后保存;工具
@rem set JAVA_HOME=%JAVA_HOME% set JAVA_HOME=D:\java\jdk --jdk安装路径
下载到的hadooponwindows-master.zip,解压,将bin目录(包含如下.dll和.exe文件)文件替换原来hadoop目录下的bin目录;oop
1.运行cmd窗口,执行“hdfs namenode -format”;
2.运行cmd窗口,切换到hadoop的sbin目录,执行“start-all.cmd”,它将会启动如下进程。
成功后,如图:
至此,hadoop服务已经搭建完毕。
根据你core-site.xml的配置,接下来你就能够经过:hdfs://localhost:9000来对hdfs进行操做了。
1.建立输入目录
C:\WINDOWS\system32>hadoop fs -mkdir hdfs://localhost:9000/user/ C:\WINDOWS\system32>hadoop fs -mkdir hdfs://localhost:9000/user/wcinput
2.上传数据到目录
C:\WINDOWS\system32>hadoop fs -put D:\file1.txt hdfs://localhost:9000/user/wcinput C:\WINDOWS\system32>hadoop fs -put D:\file2.txt hdfs://localhost:9000/user/wcinput
3.查看文件
大功告成。
1.资源管理GUI:http://localhost:8088/;
2.节点管理GUI:http://localhost:50070/;
D:\HADOOP\hadoop>hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.0.jar pi 10 10 Number of Maps = 10 Samples per Map = 10 Wrote input for Map #0 Wrote input for Map #1 Wrote input for Map #2 Wrote input for Map #3 Wrote input for Map #4 Wrote input for Map #5 Wrote input for Map #6 Wrote input for Map #7 Wrote input for Map #8 Wrote input for Map #9 Starting Job 18/11/09 13:31:06 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 18/11/09 13:31:07 INFO input.FileInputFormat: Total input files to process : 10 18/11/09 13:31:07 INFO mapreduce.JobSubmitter: number of splits:10 18/11/09 13:31:07 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled 18/11/09 13:31:07 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1541741344890_0001 18/11/09 13:31:08 INFO impl.YarnClientImpl: Submitted application application_1541741344890_0001 18/11/09 13:31:08 INFO mapreduce.Job: The url to track the job: http://DESKTOP-S0J61R2:8088/proxy/application_1541741344890_0001/ 18/11/09 13:31:08 INFO mapreduce.Job: Running job: job_1541741344890_0001 18/11/09 13:31:29 INFO mapreduce.Job: Job job_1541741344890_0001 running in uber mode : false 18/11/09 13:31:29 INFO mapreduce.Job: map 0% reduce 0% 18/11/09 13:31:43 INFO mapreduce.Job: map 50% reduce 0% 18/11/09 13:31:44 INFO mapreduce.Job: map 60% reduce 0% 18/11/09 13:31:52 INFO mapreduce.Job: map 90% reduce 0% 18/11/09 13:31:53 INFO mapreduce.Job: map 100% reduce 0% 18/11/09 13:31:54 INFO mapreduce.Job: map 100% reduce 100% 18/11/09 13:32:04 INFO mapreduce.Job: Job job_1541741344890_0001 completed successfully 18/11/09 13:32:04 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=226 FILE: Number of bytes written=2238841 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=2680 HDFS: Number of bytes written=215 HDFS: Number of read operations=43 HDFS: Number of large read operations=0 HDFS: Number of write operations=3 Job Counters Launched map tasks=10 Launched reduce tasks=1 Data-local map tasks=10 Total time spent by all maps in occupied slots (ms)=99705 Total time spent by all reduces in occupied slots (ms)=8623 Total time spent by all map tasks (ms)=99705 Total time spent by all reduce tasks (ms)=8623 Total vcore-milliseconds taken by all map tasks=99705 Total vcore-milliseconds taken by all reduce tasks=8623 Total megabyte-milliseconds taken by all map tasks=102097920 Total megabyte-milliseconds taken by all reduce tasks=8829952 Map-Reduce Framework Map input records=10 Map output records=20 Map output bytes=180 Map output materialized bytes=280 Input split bytes=1500 Combine input records=0 Combine output records=0 Reduce input groups=2 Reduce shuffle bytes=280 Reduce input records=20 Reduce output records=0 Spilled Records=40 Shuffled Maps =10 Failed Shuffles=0 Merged Map outputs=10 GC time elapsed (ms)=1144 CPU time spent (ms)=4669 Physical memory (bytes) snapshot=3203293184 Virtual memory (bytes) snapshot=3625623552 Total committed heap usage (bytes)=2142240768 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=1180 File Output Format Counters Bytes Written=97 Job Finished in 58.577 seconds Estimated value of Pi is 3.20000000000000000000
Windows平台Hadoop出现 Exception message: CreateSymbolicLink error (1314): ???????????
平台:
hadoop 2.7.1
windows 2008 server R2
问题描述:
在使用kettel执行ELT任务到hive时 hadoop出现Exception message: CreateSymbolicLink error (1314): ???????????(建立符号表异常),通过分析发现为windows帐户不具有建立符号表的权限
解决方法:
1. 默认管理员能够建立符号表,可使用管理员命令行启动 hadoop的应用;
2. 经过:
2.1.win+R gpedit.msc
2.2. 计算机配置->windows设置->安全设置->本地策略->用户权限分配->建立符号连接。
2.3. 把用户添加进去,重启或者注销
的方式来添加帐户的建立符号表权限信息。
参考文献:
https://stackoverflow.com/questions/28958999/hdfs-write-resulting-in-createsymboliclink-error-1314-a-required-privilege