JavaShuo
栏目
标签
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
时间 2021-01-02
原文
原文链接
本文首先针对MCNN,提出了其两个缺点:大量的训练时间和无效的分支架构。 MCNN由于使用了多列网络,参数比较多,需要训练时间长容易理解。可是作者为什么说MCNN的多列是“无效的分支”呢?文中给出了实验。 MCNN的主要设计目的是利用每一列的不同感受野来估计不同拥挤等级的场景。即设计者想让三列网络提取出不同的特征。作者取出了Shanghai Part_A中的50个样例,分别输入到MCNN的三列网络
>>阅读原文<<
相关文章
1.
Summary - CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly
2.
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes2018—论文笔记
3.
人群密度估计--CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
4.
Understanding Convolutional Neural Networks for NLP
5.
[转] Understanding Convolutional Neural Networks for NLP
6.
人群密度估计--Fully Convolutional Crowd Counting On Highly Congested Scenes
7.
经典论文阅读--CSRNet
8.
(翻译)Understanding Convolutional Neural Networks for NLP
9.
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
10.
Understanding and Visualizing Convolutional Neural Networks
更多相关文章...
•
Swift for 循环
-
Swift 教程
•
Scala for循环
-
Scala教程
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
•
Kotlin学习(一)基本语法
相关标签/搜索
networks
highly
scenes
dilated
csrnet
understanding
convolutional
neural
mysql..the
the&nbs
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 让chrome支持小于12px的文字
2.
集合的一点小总结
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基础,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打开iOS真机调试操作
8.
improved open set domain adaptation with backpropagation 学习笔记
9.
Chrome插件 GitHub-Chart Commits3D直方图视图
10.
CISCO ASAv 9.15 - 体验思科上一代防火墙
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Summary - CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly
2.
CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes2018—论文笔记
3.
人群密度估计--CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
4.
Understanding Convolutional Neural Networks for NLP
5.
[转] Understanding Convolutional Neural Networks for NLP
6.
人群密度估计--Fully Convolutional Crowd Counting On Highly Congested Scenes
7.
经典论文阅读--CSRNet
8.
(翻译)Understanding Convolutional Neural Networks for NLP
9.
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
10.
Understanding and Visualizing Convolutional Neural Networks
>>更多相关文章<<