给定一条直线上$n$个点,要求去掉最少的点,使得直线上相距最远的两个点的距离$\leq d$.c++
枚举长度为$d$的区间。数组
#include <bits/stdc++.h> #define F(i, a, b) for (int i = (a); i < (b); ++i) #define F2(i, a, b) for (int i = (a); i <= (b); ++i) #define dF(i, a, b) for (int i = (a); i > (b); --i) #define dF2(i, a, b) for (int i = (a); i >= (b); --i) using namespace std; typedef long long LL; int a[110]; int main() { int n, d; scanf("%d%d", &n, &d); F(i, 0, n) { int x; scanf("%d", &x); ++a[x]; } F2(i, 1, 100) a[i] += a[i-1]; int ans = min(a[100]-a[d], a[99-d]); F(i, 1, 100-d) { int l = i, r = i+d; ans = min(ans, a[l-1]+a[100]-a[r]); } printf("%d\n", ans); return 0; }
初始数为$n$,两种操做:spa
求最小代价使$n$变为$1$.code
一旦某一次除法的代价$\gt$减法的(等效)代价,则直接减到$1$,不然进行除法操做。队列
#include <bits/stdc++.h> #define F(i, a, b) for (int i = (a); i < (b); ++i) #define F2(i, a, b) for (int i = (a); i <= (b); ++i) #define dF(i, a, b) for (int i = (a); i > (b); --i) #define dF2(i, a, b) for (int i = (a); i >= (b); --i) using namespace std; typedef long long LL; int main() { LL n,k,a,b; scanf("%I64d%I64d%I64d%I64d",&n,&k,&a,&b); LL ans = 0; bool flag = false; while (n!=1) { if (n%k) { ans += n%k*a; n = n/k*k; } if (n/k*(k-1)*a <= b) { ans += (n-1)*a; break; } ans += b; n /= k; } printf("%I64d\n", ans); return 0; }
在字符集$\sum$范围内,求长度为$k$的,比给定字符串$s$大的,最小的字符串。字符串
记$len=|s|$,get
#include <bits/stdc++.h> #define F(i, a, b) for (int i = (a); i < (b); ++i) #define F2(i, a, b) for (int i = (a); i <= (b); ++i) #define dF(i, a, b) for (int i = (a); i > (b); --i) #define dF2(i, a, b) for (int i = (a); i >= (b); --i) #define maxn 100010 using namespace std; typedef long long LL; char s[maxn]; int mp[256], ch[30], a[maxn]; bool vis[256]; int main() { int n, k, tot=0; scanf("%d%d", &n,&k); scanf("%s",s); int len = strlen(s); F(i, 0, len) { if (tot==26) break; if (!vis[s[i]]) { ch[tot++] = s[i]; vis[s[i]] = true; } } sort(ch, ch+tot); F(i, 0, tot) mp[ch[i]] = i; if (k>len) { while (len<k) s[len++] = ch[0]; s[len] = '\0'; puts(s); return 0; } s[k] = '\0'; F(i, 0, k) a[i] = mp[s[i]]; int i = k-1; while (true) { ++a[i]; if (a[i]<tot) break; a[i--] = 0; } F(i, 0, k) s[i] = ch[a[i]]; puts(s); return 0; }
给定数组$a$,按必定的规则能够生成数组$b$. 规则以下:it
- $b_1=b_2=b_3=b_4=0.$
- For all $5\leq i\leq n$: --- $b_i=0$ if $a_i,a_{i-1},a_{i-2},a_{i-3},a_{i-4}\gt r$ and $b_{i-1},b_{i-2},b_{i-3},b_{i-4}=1$ --- $b_i=1$ if $a_i,a_{i-1},a_{i-2},a_{i-3},a_{i-4}\lt l$ and $b_{i-1},b_{i-2},b_{i-3},b_{i-4}=0$ --- $b_i=b_{i-1}$ otherwise
只需肯定每一个转折点,对于其及其前面共$5$个数字,由$1$变为$0$则取最小值使$r$比它小,由$0$变为$1$则取最大值使$l$比它大。class
至于中间则无需考虑,由于题目保证有解,而要不发生变化,即条件不成立,则只要$l$尽可能小,$r$尽可能大便可。test
#include <bits/stdc++.h> #define F(i, a, b) for (int i = (a); i < (b); ++i) #define F2(i, a, b) for (int i = (a); i <= (b); ++i) #define dF(i, a, b) for (int i = (a); i > (b); --i) #define dF2(i, a, b) for (int i = (a); i >= (b); --i) #define inf 1000000000 #define maxn 100010 using namespace std; char s[maxn]; int a[maxn]; typedef long long LL; int minn(int p) { int ret = a[p]; F(i, p+1, p+5) ret = min(ret, a[i]); return ret; } int maxx(int p) { int ret = a[p]; F(i, p+1, p+5) ret = max(ret, a[i]); return ret; } int main() { int n; scanf("%d", &n); F(i, 0, n) scanf("%d", &a[i]); scanf("%s", s); bool flag = false; int r = inf, l = -inf; F(i, 0, n) { if (s[i]-'0'!=flag) { if (flag) r = min(r, minn(i-4)-1); else l = max(l, maxx(i-4)+1); flag = !flag; } } printf("%d %d\n", l, r); return 0; }
给定一个数组,将其分割成若干段,将每一段的$value$求和,要求得最小值。
$value$定义以下: 对于长度为$k$的数组$b$,其$value$为除了$\lfloor\frac{k}{c}\rfloor$小元素之外的元素的和。 例如:[3,1,6,5,2], c=2,其value为3+6+5=14.
首先一个显然的事实是:假设不分段而做为一个总体能去除掉$m$个元素,那分段去除掉的元素个数必然$\leq m$.
然而又有另外一个显然的事实:不分段去掉$m$个元素之和$sum1$,与分段去掉$m$个元素$sum2$相比,显然$sum1\leq sum2$. 由于不分段的话去掉的是一整段的$m$个最小,而分段的话去掉的是$m$段中每段中的最小。
综合上面两个事实,应该尽可能多分段,又要保证每一段分的有价值,即,最理想的状况就是每$c$个元素分一段。
因而$dp$以下:
$dp[i] = min(dp[i-1]+a[i], dp[i-c]+sum[i-c+1..i]-min[i-c+1..i])$
至于最小值,直接用ST表进行RMQ便可,比赛时用的是单调队列维护的...。
#include <bits/stdc++.h> #define F(i, a, b) for (int i = (a); i < (b); ++i) #define F2(i, a, b) for (int i = (a); i <= (b); ++i) #define dF(i, a, b) for (int i = (a); i > (b); --i) #define dF2(i, a, b) for (int i = (a); i >= (b); --i) #define maxn 100010 using namespace std; typedef long long LL; LL a[maxn], sum[maxn], dp[maxn]; int st[maxn]; int main() { int n, c; scanf("%d%d", &n, &c); F2(i, 1, n) { scanf("%I64d", &a[i]); sum[i] = sum[i-1] + a[i]; } if (c==1) { printf("%d\n", 0); return 0; } dp[1] = a[1]; int l=0, r=0; st[r++] = 1; F2(i, 2, n) { LL minn = dp[i-1]+a[i]; while (r>l && a[st[r-1]]>=a[i]) --r; st[r++] = i; if (i-c>=0) { while (r>l && st[l]<=i-c) ++l; minn = min(minn, dp[i-c]+sum[i]-sum[i-c]-a[st[l]]); } dp[i] = minn; } printf("%I64d\n", dp[n]); return 0; }