掌握 MySQL 的索引查询优化技巧

本文的内容是总结一些MySQL的常见使用技巧,以供没有DBA的团队参考。如无特殊说明,存储引擎以InnoDB为准。laravel

MySQL的特色

了解MySQL的特色有助于更好的使用MySQL,MySQL和其它常见数据库最大的不一样在于存在存储引擎这个概念,存储引擎负责存储和读取数据。不一样的存储引擎具备不一样的特色,用户能够根据业务的特色选择适合的存储引擎,甚至是开发一个新的引擎。MySQL的逻辑架构大体以下:面试

MySQL默认的存储引擎是InnoDB,该存储引擎的主要特色是:sql

  • 支持事务处理
  • 支持行级锁
  • 数据存储在表空间中,表空间由一些列数据文件组成
  • 采用MVVC(多版本并发控制)机制实现高并发
  • 表基于主键的聚簇索引创建
  • 支持热备份

其它常见存储引擎特色概述:shell

  • MyISAM:老版本MySQL的默认引擎,不支持事务和行级锁,开发者能够手动控制表锁;支持全文索引;崩溃后没法安全恢复;支持压缩表,压缩表数据不可修改,但占用空间较少,能够提升查询性能
  • Archive:只支持Insert和Select,批量插入很快,经过全表扫描查询数据
  • SCV:把一个SCV文件当作一个表处理
  • Memory:数据存储在内存中

还有不少,再也不一一列举。数据库

数据类型优化

选择数据类型的原则:缓存

  • 选择占用空间小的数据类型
  • 选择简单的类型
  • 避免没必要要的可空列

占用空间小的类型更节省硬件资源,如磁盘、内存和CPU。尽可能使用简单的类型,如能用int就不用char,由于后者的排序涉及到字符集的选择,比使用int复杂。可空列使用更多的存储空间,若是在可空列上建立索引,MySQL须要额外的字节作记录。建立表时,默认都是可空,容易被开发者忽视,最好是手动改成不可空,若是要存储的数据确实不会有空值的话。安全

整型类型

整型类型包括bash

  • tinyint
  • smallint
  • mediumint
  • int
  • bigint

它们分别使用八、1六、2四、32和64位存储数字,它们能够表示服务器

范围的数字,前面能够加unsigned修饰,这样可让正数的可表示范围提升1倍,可是没法表示负数。另外,为整型指定长度没什么卵用,数据类型定下来,长度也就相应定下来了。架构

小数类型

  • float
  • double
  • decimal

floatdouble就是一般意义上的floatdouble,前者使用32位存储数据,后者使用64位存储数据,和整型同样,为它们指定长度没什么卵用。

decimal类型比较复杂,支持精确计算,占用的空间也大,decimal使用每4个字节表示9个数字,如decimal(18,9)表示数字长度是18,其中小数位9个数字,整数部分9个数字,加上小数点自己,共占用9个字节。考虑到decimal占用空间较多,以及精度计算很复杂,数据量大的时候能够考虑用bigint代替之,能够在持久化和读取前对真实数据进行一些缩放操做。

字符串类型

  • varchar
  • char
  • varbinary
  • binary
  • blob
  • text
  • 枚举

varchar类型数据实际占用空间等于字符串的长度加上1个或2个用来记录字符串长度的字节(当row-format没有被设置为fixed时),varchar很节省空间。当表中某列字符串类型的数据长度差异较大时适合使用varchar。

char的实际占用空间是固定的,当表中字符串数据的长度相差无几或很短时适合使用chart类型。

与varchar和char对应的有varbinary和binary,后者存储的是二进制字符串,和前者相比,后者大小写敏感,不用考虑编码方式,执行比较操做时更快。

须要注意的是:虽然varchar(5)和varchar(200)在存储“hello”这个字符串时使用相同的存储空间,但并不意味着将varchar的长度设置太大不会影响性能,实际上,MySQL的某些内部计算,好比建立内存临时表时(某些查询会致使MySQL自动建立临时表),会分配固定大小的空间存放数据。

blob使用二进制字符串保存大文本,text使用字符保存大文本,InnoDB会使用专门的外部存储区来存放此类数据,数据行内仅存放指向他们的指针,此类数据不宜建立索引(要建立也只能正对字符串前缀建立),不过也不会有人这么干。

若是某列字符串大量重复且内容有限,可以使用枚举代替,MySQL处理枚举时维护了一个“数字-字符串”表,使用枚举能够减小不少存储空间。

时间类型

  • year
  • date
  • time
  • datetime
  • timestamp

datetime存储范围是1001到9999,精确到秒。timestamp存储1970年1月1日午夜以来的秒数,能够表示到2038年。占用4个字节,是datetime占用空间的一半。timestamp表示的时间和时区有关,另外timestamp列还有个特性,执行insert或update语句时,MySQL会自动更新第一个类型为timestamp的列的数据为当前时间。不少表中都有设计有一列叫作UpdateTime,这个列使用timestamp却是挺合适的,会自动更新,前提是系统不会使用到2038年。

主键类型的选择

尽量使用整型,整型占用空间少,还能够设置为自动增加。尤为别使用GUID,MD5等哈希值字符串做为主键,这类字符串随机性很大,因为InnoDB主键默认是聚簇索引列,因此致使数据存储太分散。另外,InnoDB的二级索引列中默认包含主键列,若是主键太长,也会使得二级索引很占空间。

特殊类型的数据

存储IP最好使用32位无符号整型,MySQL提供了函数inet_aton()和inet_ntoa()进行IP地址的数字表示和字符串表示之间的转换。

索引优化

InnoDB使用B+树实现索引,举个例子,假设有个People,建表语句以下

CREATE TABLE `people` (
  `Id` int(11) NOT NULL AUTO_INCREMENT,
  `Name` varchar(5) NOT NULL,
  `Age` tinyint(4) NOT NULL,
  `Number` char(5) NOT NULL COMMENT '编号',
  PRIMARY KEY (`Id`),
  KEY `i_name_age_number` (`Name`,`Age`,`Number`)
) ENGINE=InnoDB AUTO_INCREMENT=14 DEFAULT CHARSET=utf8;
复制代码

插入数据:

它的索引结构大体是这样的:

也就是说,索引列的顺序很重要,若是两行数据的Name列相同,则用Age列比较大小,若是Age列相同,则用Number列比较大小。先用第一列排序,而后是第二列,最后是第三列。

查询的使用应该尽可能从左往右匹配,另外,若是左边列范围查找,右边列没法使用索引;还有就是不能隔列查询,不然后面的索引也没法使用到。如如下几个SQL是正面范例:

  • SELECT * from people where Name =’Abel’ and Age = 2 AND Number = 12312
  • SELECT * from people where Name =’Abel’
  • SELECT * from people where Name like ‘Abel%’
  • SELECT * from people where Name = ‘Andy’ and Age BETWEEN 11 and 20
  • SELECT * from people ORDER BY NAME
  • SELECT * from people ORDER BY NAME, Age
  • SELECT * from people GROUP BY Name

如下几个SQL是反面范例:

  • SELECT * from people where Age = 2
  • SELECT * from people where NAME like ‘%B’
  • SELECT * from people where age = 2
  • SELECT * from people where NAME = ‘ABC’ AND number = 3
  • SELECT * from people where NAME like ‘B%’ and age = 22

一个使用Hash值建立索引的技巧

若是表中有一列存储较长字符串,假设名字为URL,在此列上建立的索引比较大,有个办法能够缓解:建立URL字符串的数字哈希值的索引。再新建一个字段,好比叫作URL_CRC,专门放置URL的哈希值,而后给这个字段建立索引,查询时这样写:

select * from t where URL_CRC = 387695885 and URL = 'www.baidu.com'

若是数据量比较多,为防止哈希冲突,可自定义哈希函数,或用MD5函数返回值的一部分做为哈希值:

SELECT CONV(RIGHT(MD5('www.baidu.com'),16), 16, 10)

前缀索引

若是字符串列存储的数据较长,建立的索引也很大,这时可使用前缀索引,即:只针对字符串前几个字符作索引,这样能够缩短索引的大小,不过,显然,此类索引在执行order bygroup by时不起做用。

建立前缀索引时选择前缀长度很重要,在不破坏原来数据分布的状况下尽量选择较短的前缀。举个例子,若是若是大部分字符串是以”abc”开头,那么若是限定前缀索引长度为4,索引值会包含太多的重复的”abcX”。

多列索引

上面提到的“People”上建立的索引即为多列索引,多列索引每每比多个单列索引更好。

  • 对多个索引进行and查询时,应该建立多列索引,而不是多个单列索引
  • 能够试试这样写的效果:

select * from t where f1 = 'v1' and f2 <> 'v2' union all select * from t where f2 = 'v2' and f1 <> 'v1'

多列索引的顺序很重要,一般,不考虑排序和分组查询时,应该把选择性(选择性是指某表索引列不一样数据的个数/总行数。选择性高意味着重复数据少)大的列放到前面。但也有例外,若是能确认某些查询是频繁执行的,则应该优先照顾这些查询的选择性,好比,若是上面的People表中Name的选择性大于Age,查询语句应该这样写:

select * from people where name = 'xxx' and age = xx

Name列放了索引中的左侧比较合适,可是若是某个SQL执行的评率最高,好比

select * from people where name = 'xxx' and age = 20

当age=20的记录在数据库中很是少时,反而把age放到索引列的左端效率更高。把age放了索引左端可能对其它age不等于20的查询来讲不公平,若是不能肯定age=20是最很是频繁的查询条件,仍是要综合考虑,把name放了左侧合适。

聚簇索引

聚簇索引是一种数据存储结构,InnoDB在主键的索引的叶子节点中直接保存了数据行,而不是像二级索引那样只是保存了索引列的值和所指向行的主键值。因为这个特性,一个表只能有一个聚簇索引。若是一个表没有定义主键也没有定义具备惟一索引的列,那么InnoDB会生成一个隐藏列,而且在此列设为聚簇索引列。

覆盖索引

简单地说,某些查询只须要查询索引列,那么就不用再根据索引B树节点记录的主键ID进行二次查询了。

重复索引和冗余索引

若是重复在某列建立索引,并不会带来任何好处,只有坏处,应该尽可能避免。好比给主键建立惟一索引和普通索引就是多于的,由于InnoDB的主键默认就是聚簇索引了。

冗余索引和重复索引不一样,好比某个索引是(A,B),另外一个索引是(A),这叫冗余索引,前者能够代替后者,后者不能够代替前者的做用。可是(A,B)和(B)以及(A,B)和(B,A)不算冗余索引,起做用谁也代替不了谁。

若是一个表中已经存在索引(A),如今又想建立索引(A,B),那么只需扩展就的索引就能够,没有必要建立新的索引。须要注意的是若是已经存在索引(A),那么也没有必要在建立索引(A,ID),其中ID指主键,由于索引A默认已经包含了主键了,也算是冗余主键。

可是,有时候,冗余索引也是可取的,假设已经存在索引(A),将其扩展为(A,B)后,由于B列是一个很长的类型,致使用A单独查询时没有之前快了,这时能够考虑新建立索引(A,B)。

不使用的索引

不使用的索引徒然增长insert、update和delete的效率,应该及时删除

索引使用总结

索引的三星原则:

  • 索引将查询相关的记录按顺序放在一块儿则得一星
  • 索引中的数据顺序和查询结果的排序一致则得一星
  • 索引中包含了查询所须要的所有列则得一星

第一个条原则的意思是where条件中查询的顺序和索引是一致的,就是前面说的从左到右使用索引。

索引不是万能的,当数据量巨大时,维护索引自己也是耗费性能的,应该考虑分区分表存储。

查询优化

查询慢的缘由

是否向数据库请求了多余的行

好比应用程序只须要10条数据,可是却向数据库请求了全部的数据,在显示在UI上以前抛弃了大部分数据。

是否向数据库请求了多余的列

好比应用程序只须要展示5列,但却经过select * from 把所有的列都查了出来

是否重复屡次执行了相同的查询

应用程序是否能够考虑一次查询而后缓存,后面的用到时可使用第一次查询出来的记录。

MySQL是否在扫描额外的记录

经过查看执行计划能够大概了解须要扫描的记录数,若是这个数字超出了预期,尽量经过添加索引、优化SQL(就是本节的重点),或者改变表结构(如新增一个单独的汇总表,专门供某个语句查询用)来解决。

重构查询的方式

  • 将一个复杂的查询分解成多个简单的查询
  • 将大的查询切分红小的查询,每次查询功能同样,只完成一小部分
  • 分解关联查询。能够将一个大的关联查询改为分别查询若干个表,而后在应用程序代码中处理

杂七杂八

优化count()

Count有两个做用,一是统计指定的列或表达式,二是统计行数。若是参数传入一列名或者是一个表达式,那么count会统计全部结果不为NULL的行数,若是参数是*,那么count会统计全部行数。这里有一个传表达式的例子:

SELECT count(name like 'B%') from people

  • 可使用近似值优化来代替count(),如执行计划中的行数。
  • 索引覆盖扫描
  • 增长汇总表
  • 增长内存缓存系统记录数据条数


关联查询的优化

  • MySQL优化器关联表查询是这样进行的,好比有两个表A和B经过c列关联,MySQL会遍历A表,而后根据遍历到的c列的值去B表中查找数据。综上所述,一般,如无只须要给B表的c列加上索引便可
  • 确保order by和group by涉及到的列只属于一个表,这样才有可能发挥索引的做用


优化子查询

对于MySQL5.5及如下版本,尽可能用链接代替子查询。

优化group by、distinct

若是可能,尽可能对主键施加这两种操做。

优化limit,好比有SQL

SELECT * from sa_stockinfo ORDER BY StockAcc LIMIT 400, 5
复制代码

MySQL优化器会查找405行全部列数据而后丢弃400。若是能利用覆盖索引查询则没必要查询出这么多列,先修改成:

SELECT * FROM sa_stockinfo i JOIN (SELECT StockInfoID FROM sa_stockinfo ORDER BY StockAcc LIMIT 400,5)t ON i.StockInfoID = t.StockInfoID
复制代码

StockAcc上建有索引,该查询会利用索引覆盖,较快找出符合条件的主键,而后在作联合查询,在数据量大的时候效果明显。

优化union

如无必要,必定要用关键字 union all,这样MySQL把数据放到临时表时不会再作惟一性验证

判断某条记录是否存在,一般的作法是

select count(*) from t where condition
复制代码

最好这样写:

SELECT IFNULL((SELECT 1 from tableName where condition LIMIT 1),0)复制代码
以上内容但愿帮助到你们, 不少PHPer在进阶的时候总会遇到一些问题和瓶颈,业务代码写多了没有方向感,不知道该从那里入手去提高,对此我整理了一些资料,包括但不限于:分布式架构、高可扩展、高性能、高并发、服务器性能调优、TP6,laravel,YII2,Redis,Swoole、Swoft、Kafka、Mysql优化、shell脚本、Docker、微服务、Nginx等多个知识点高级进阶干货须要的能够免费分享给你们 ,须要戳这里 PHP进阶架构师>>>视频、面试文档免费获取
相关文章
相关标签/搜索