从本篇开始计划开启一个系列,以《Interest Rate Risk Modeling》为蓝本,介绍有关利率风险的计算案例,内容涉及从简单的久期、凸性到主成分久期和久期向量模型等高阶的度量指标。python
固息债的久期、凸性和 BPS 是最多见的利率风险度量指标,下面将以 200205 为例,计算 2020-07-28 这一天的价格,以及久期、凸性和 BPS。函数
首先从中国货币网查询债券的基本信息,用以配置 FixedRateBond
对象。lua
import QuantLib as ql import prettytable as pt today = ql.Date(28, ql.July, 2020) ql.Settings.instance().evaluationDate = today settlementDays = 1 faceAmount = 100.0
settlementDays = 1
表示 T+1 结算,而估值日期就是 2020-07-28 这一天。rest
effectiveDate = ql.Date(10, ql.March, 2020) terminationDate = ql.Date(10, ql.March, 2030) tenor = ql.Period(1, ql.Years) calendar = ql.China(ql.China.IB) convention = ql.Unadjusted terminationDateConvention = convention rule = ql.DateGeneration.Backward endOfMonth = False schedule = ql.Schedule( effectiveDate, terminationDate, tenor, calendar, convention, terminationDateConvention, rule, endOfMonth) # for s in schedule: # print(s) coupons = ql.DoubleVector(1) coupons[0] = 3.07 / 100.0 accrualDayCounter = ql.ActualActual( ql.ActualActual.Bond, schedule) paymentConvention = ql.Unadjusted bond = ql.FixedRateBond( settlementDays, faceAmount, schedule, coupons, accrualDayCounter, paymentConvention)
须要注意的是,日历采用中国的银行间市场,遇到假期不调整。code
若是像下面同样,采用基于期限结构的订价引擎,在构造 ActualActual
对象时要附加上债券现金流支付的日期表(Schedule
对象),不然在计算贴现因子的时候可能产生误差,具体的讨论请查看 StackExchange 上的讨论:https://quant.stackexchange.com/questions/12707/pricing-a-fixedratebond-in-quantlib-yield-vs-termstructureorm
在上海清算所查询估值、价格和久期等数据,做为比较基准。对象
因为使用的是估值,也就是“到期利率”,这隐含要求于一个“水平”(flat)的期限结构,因此使用 FlatForward
类。对于水平的期限结构而言,远期利率、即期利率和到期利率三者相等。blog
DiscountingBondEngine
是最多见的债券订价引擎,主要用于现金流的贴现计算。ci
bondYield = 3.4124 / 100.0 compounding = ql.Compounded frequency = ql.Annual termStructure = ql.YieldTermStructureHandle( ql.FlatForward( settlementDays, calendar, bondYield, accrualDayCounter, compounding, frequency)) engine = ql.DiscountingBondEngine(termStructure) bond.setPricingEngine(engine)
价格信息能够经过 FixedRateBond
的成员函数得到,而久期等指标的计算在 BondFunctions
的内部函数中实现(BondFunctions
的内部函数也能够依据到期利率计算价格信息)。get
cleanPrice = bond.cleanPrice() dirtyPrice = bond.dirtyPrice() accruedAmount = bond.accruedAmount() duration = ql.BondFunctions.duration( bond, bondYield, accrualDayCounter, compounding, frequency) convexity = ql.BondFunctions.convexity( bond, bondYield, accrualDayCounter, compounding, frequency) bps = ql.BondFunctions.basisPointValue( bond, bondYield, accrualDayCounter, compounding, frequency) tab = pt.PrettyTable(['item', 'QuantLib', 'ShClearing']) tab.add_row(['clean price', cleanPrice, 97.2211]) tab.add_row(['dirty price', dirtyPrice, 98.4071]) tab.add_row(['accrued amount', accruedAmount, 1.1859]) tab.add_row(['duration', duration, 8.0771]) tab.add_row(['convexity', convexity, 79.2206]) tab.add_row(['bps', abs(bps), 0.0795]) tab.float_format = '.4' print(tab)
+----------------+----------+------------+ | item | QuantLib | ShClearing | +----------------+----------+------------+ | clean price | 97.2212 | 97.2211 | | dirty price | 98.4071 | 98.4071 | | accrued amount | 1.1859 | 1.1859 | | duration | 8.0771 | 8.0771 | | convexity | 79.2206 | 79.2206 | | bps | 0.0795 | 0.0795 | +----------------+----------+------------+
最终结果和上海清算所公布的几乎一致。
BondFunctions
的 duration
函数能够计算三种久期,分别是简单久期(Simple)、麦考利久期(Macaulay)和修正久期(Modified),只需配置久期类型参数便可,默认计算的是修正久期。
程序实现上,麦考利久期的计算依赖于修正久期。
所谓简单久期,即现金流的期限关于现金流贴现值的加权平均。若是计息方式是复利,简单久期等于麦考利久期。不过,若是是连续复利,计算麦考利久期将会报错,简单久期依然能够计算出来,更有普适性。连续复利的状况下,简单久期等于修正久期。
durationSimple = ql.BondFunctions.duration( bond, bondYield, accrualDayCounter, compounding, frequency, ql.Duration.Simple) durationModified = ql.BondFunctions.duration( bond, bondYield, accrualDayCounter, compounding, frequency, ql.Duration.Modified) durationMacaulay = ql.BondFunctions.duration( bond, bondYield, accrualDayCounter, compounding, frequency, ql.Duration.Macaulay) tabDuration = pt.PrettyTable(['type', 'value']) tabDuration.add_row(['Simple', durationSimple]) tabDuration.add_row(['Modified', durationModified]) tabDuration.add_row(['Macaulay', durationMacaulay]) print(tabDuration)
+----------+-------------------+ | type | value | +----------+-------------------+ | Simple | 8.352745733674992 | | Modified | 8.077122021802985 | | Macaulay | 8.352745733674992 | +----------+-------------------+