这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的不少函数的高级封装,使用这个高级库来开发程序将会提升效率。数组
咱们改写第十三节的程序,卷积函数咱们使用tf.contrib.layers.conv2d(),池化函数使用tf.contrib.layers.max_pool2d()和tf.contrib.layers.avg_pool2d(),全链接函数使用tf.contrib.layers.fully_connected()。网络
def convolution(inputs, num_outputs, kernel_size, stride=1, padding='SAME', data_format=None, rate=1, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None):
经常使用的参数说明以下:session
def max_pool2d(inputs, kernel_size, stride=2, padding='VALID', data_format=DATA_FORMAT_NHWC, outputs_collections=None, scope=None):
参数说明以下:ide
def avg_pool2d(inputs, kernel_size, stride=2, padding='VALID', data_format=DATA_FORMAT_NHWC, outputs_collections=None, scope=None):
参数说明以下:函数
def fully_connected(inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None):
参数说明以下:编码
代码以下:spa
# -*- coding: utf-8 -*-
""" Created on Thu May 3 12:29:16 2018 @author: zy """
''' 创建一个带有全链接层的卷积神经网络 并对CIFAR-10数据集进行分类 1.使用2个卷积层的同卷积操做,滤波器大小为5x5,每一个卷积层后面都会跟一个步长为2x2的池化层,滤波器大小为2x2 2.对输出的64个feature map进行全局平均池化,获得64个特征 3.加入一个全链接层,使用softmax激活函数,获得分类 '''
import cifar10_input import tensorflow as tf import numpy as np def print_op_shape(t): ''' 输出一个操做op节点的形状 '''
print(t.op.name,'',t.get_shape().as_list()) ''' 一 引入数据集 ''' batch_size = 128 learning_rate = 1e-4 training_step = 15000 display_step = 200
#数据集目录
data_dir = './cifar10_data/cifar-10-batches-bin'
print('begin') #获取训练集数据
images_train,labels_train = cifar10_input.inputs(eval_data=False,data_dir = data_dir,batch_size=batch_size) print('begin data') ''' 二 定义网络结构 '''
#定义占位符
input_x = tf.placeholder(dtype=tf.float32,shape=[None,24,24,3]) #图像大小24x24x
input_y = tf.placeholder(dtype=tf.float32,shape=[None,10]) #0-9类别
x_image = tf.reshape(input_x,[batch_size,24,24,3]) #1.卷积层 ->池化层
h_conv1 = tf.contrib.layers.conv2d(inputs=x_image,num_outputs=64,kernel_size=5,stride=1,padding='SAME', activation_fn=tf.nn.relu) #输出为[-1,24,24,64]
print_op_shape(h_conv1) h_pool1 = tf.contrib.layers.max_pool2d(inputs=h_conv1,kernel_size=2,stride=2,padding='SAME') #输出为[-1,12,12,64]
print_op_shape(h_pool1) #2.卷积层 ->池化层
h_conv2 =tf.contrib.layers.conv2d(inputs=h_pool1,num_outputs=64,kernel_size=[5,5],stride=[1,1],padding='SAME', activation_fn=tf.nn.relu) #输出为[-1,12,12,64]
print_op_shape(h_conv2) h_pool2 = tf.contrib.layers.max_pool2d(inputs=h_conv2,kernel_size=[2,2],stride=[2,2],padding='SAME') #输出为[-1,6,6,64]
print_op_shape(h_pool2) #3全链接层
nt_hpool2 = tf.contrib.layers.avg_pool2d(inputs=h_pool2,kernel_size=6,stride=6,padding='SAME') #输出为[-1,1,1,64]
print_op_shape(nt_hpool2) nt_hpool2_flat = tf.reshape(nt_hpool2,[-1,64]) y_conv = tf.contrib.layers.fully_connected(inputs=nt_hpool2_flat,num_outputs=10,activation_fn=tf.nn.softmax) print_op_shape(y_conv) ''' 三 定义求解器 '''
#softmax交叉熵代价函数
cost = tf.reduce_mean(-tf.reduce_sum(input_y * tf.log(y_conv),axis=1)) #求解器
train = tf.train.AdamOptimizer(learning_rate).minimize(cost) #返回一个准确度的数据
correct_prediction = tf.equal(tf.arg_max(y_conv,1),tf.arg_max(input_y,1)) #准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,dtype=tf.float32)) ''' 四 开始训练 ''' sess = tf.Session(); sess.run(tf.global_variables_initializer()) # 启动计算图中全部的队列线程 调用tf.train.start_queue_runners来将文件名填充到队列,不然read操做会被阻塞到文件名队列中有值为止。
tf.train.start_queue_runners(sess=sess) for step in range(training_step): #获取batch_size大小数据集
image_batch,label_batch = sess.run([images_train,labels_train]) #one hot编码
label_b = np.eye(10,dtype=np.float32)[label_batch] #开始训练
train.run(feed_dict={input_x:image_batch,input_y:label_b},session=sess) if step % display_step == 0: train_accuracy = accuracy.eval(feed_dict={input_x:image_batch,input_y:label_b},session=sess) print('Step {0} tranining accuracy {1}'.format(step,train_accuracy))