/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2016 Intel Corporation */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdint.h> #include <inttypes.h> #include <sys/types.h> #include <sys/queue.h> #include <netinet/in.h> #include <setjmp.h> #include <stdarg.h> #include <ctype.h> #include <errno.h> #include <getopt.h> #include <signal.h> #include <stdbool.h> #include <rte_common.h> #include <rte_log.h> #include <rte_malloc.h> #include <rte_memory.h> #include <rte_memcpy.h> #include <rte_eal.h> #include <rte_launch.h> #include <rte_atomic.h> #include <rte_cycles.h> #include <rte_prefetch.h> #include <rte_lcore.h> #include <rte_per_lcore.h> #include <rte_branch_prediction.h> #include <rte_interrupts.h> #include <rte_random.h> #include <rte_debug.h> #include <rte_ether.h> #include <rte_ethdev.h> #include <rte_mempool.h> #include <rte_mbuf.h> static volatile bool force_quit; /* MAC updating enabled by default */ static int mac_updating = 1; /* MAC updating,默认开启。若不开启,则是和basicfw同样的模式。开启后,会有以下影响: The source MAC address is replaced by the TX_PORT MAC address 源MAC地址会改写成发送端口的MAC地址 The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 改写目的MAC地址,改写为 02:00:00:00:00:<发送端口的port id> */ #define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1 #define MAX_PKT_BURST 32 #define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */ #define MEMPOOL_CACHE_SIZE 256 /* * Configurable number of RX/TX ring descriptors */ #define RTE_TEST_RX_DESC_DEFAULT 1024 #define RTE_TEST_TX_DESC_DEFAULT 1024 static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /* ethernet addresses of ports */ static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS]; /* mask of enabled ports */ static uint32_t l2fwd_enabled_port_mask = 0; /* list of enabled ports */ static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS]; static unsigned int l2fwd_rx_queue_per_lcore = 1; // 每一个逻辑核最多能够用来处理几个端口/队列(L2fwd 一个端口分配各一个收发队列) #define MAX_RX_QUEUE_PER_LCORE 16 #define MAX_TX_QUEUE_PER_PORT 16 struct lcore_queue_conf { // 逻辑核上的队列配置 unsigned n_rx_port; // 该 lcore 上绑定多少个端口,也做为下一个数组的下标(0 ~ n-1)。 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; // 存放一系列端口号,绑定哪些端口。 } __rte_cache_aligned; // 这也就是 poll module driver 思想。绑定 lcore 和 port,特定的 lcore 轮询对应的一个或多个 port struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; // 数组下标是 lcore id static struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS]; // 用于缓冲将来要发送的数据包的结构,API rte_eth_tx_buffer 和 rte_eth_tx_buffer_flush使用的结构 static struct rte_eth_conf port_conf = { .rxmode = { // RX feature 见 flow_filtering .split_hdr_size = 0, .ignore_offload_bitfield = 1, .offloads = DEV_RX_OFFLOAD_CRC_STRIP, }, .txmode = { // TX feature .mq_mode = ETH_MQ_TX_NONE, // mq_多队列选项,有一些宏来定义用多队列发包的方法 }, }; struct rte_mempool * l2fwd_pktmbuf_pool = NULL; /* Per-port statistics struct */ struct l2fwd_port_statistics { uint64_t tx; // 发包的数量 uint64_t rx; // 收包的数量 uint64_t dropped; // 丢包的数量 } __rte_cache_aligned; struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS]; #define MAX_TIMER_PERIOD 86400 /* 1 day max */ /* A tsc-based timer responsible for triggering statistics printout */ // timer 负责每隔一段时间触发打印数据 static uint64_t timer_period = 10; /* default period is 10 seconds */ /* Print out statistics on packets dropped */ static void print_stats(void) { uint64_t total_packets_dropped, total_packets_tx, total_packets_rx; unsigned portid; total_packets_dropped = 0; total_packets_tx = 0; total_packets_rx = 0; const char clr[] = { 27, '[', '2', 'J', '\0' }; const char topLeft[] = { 27, '[', '1', ';', '1', 'H','\0' }; /* Clear screen and move to top left */ printf("%s%s", clr, topLeft); printf("\nPort statistics ===================================="); for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { /* skip disabled ports */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; printf("\nStatistics for port %u ------------------------------" "\nPackets sent: %24"PRIu64 "\nPackets received: %20"PRIu64 "\nPackets dropped: %21"PRIu64, portid, port_statistics[portid].tx, port_statistics[portid].rx, port_statistics[portid].dropped); total_packets_dropped += port_statistics[portid].dropped; total_packets_tx += port_statistics[portid].tx; total_packets_rx += port_statistics[portid].rx; } printf("\nAggregate statistics ===============================" "\nTotal packets sent: %18"PRIu64 "\nTotal packets received: %14"PRIu64 "\nTotal packets dropped: %15"PRIu64, total_packets_tx, total_packets_rx, total_packets_dropped); printf("\n====================================================\n"); } static void l2fwd_mac_updating(struct rte_mbuf *m, unsigned dest_portid) // 改写包的 MAC 层信息 { struct ether_hdr *eth; void *tmp; eth = rte_pktmbuf_mtod(m, struct ether_hdr *); /* 02:00:00:00:00:xx */ tmp = ð->d_addr.addr_bytes[0]; // 改写目的 MAC 地址为 02:00:00:00:00:<发送端口的port id> *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dest_portid << 40); /* src addr */ // 改写 源 MAC 地址 改写成发送端口的MAC地址 ether_addr_copy(&l2fwd_ports_eth_addr[dest_portid], ð->s_addr); } static void l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) { unsigned dst_port; int sent; struct rte_eth_dev_tx_buffer *buffer; dst_port = l2fwd_dst_ports[portid]; // 与之配对的端口 if (mac_updating) // 若是开启了 mac updating 模式 l2fwd_mac_updating(m, dst_port); // 调整 MAC 地址 buffer = tx_buffer[dst_port]; // 该端口的 tx_buffer sent = rte_eth_tx_buffer(dst_port, 0, buffer, m); // 将收到的包缓存在 tx_buffer 里,用于将来的发送。 // 返回值 若是为0,表示 pkt 已经被缓存 // 返回值 N>0,表示因为缓冲区被flush致使N个pkt被发送。 if (sent) port_statistics[dst_port].tx += sent; } /* main processing loop */ static void l2fwd_main_loop(void) { struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; struct rte_mbuf *m; int sent; unsigned lcore_id; uint64_t prev_tsc, diff_tsc, cur_tsc, timer_tsc; unsigned i, j, portid, nb_rx; struct lcore_queue_conf *qconf; const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US; struct rte_eth_dev_tx_buffer *buffer; prev_tsc = 0; timer_tsc = 0; lcore_id = rte_lcore_id(); // 获取本身的 lcore id qconf = &lcore_queue_conf[lcore_id]; if (qconf->n_rx_port == 0) { // 由于对每个 lcore 都执行 main 线程,若是该 lcore 上没有绑定端口,就无事可作。 RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id); return; } RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id); for (i = 0; i < qconf->n_rx_port; i++) { portid = qconf->rx_port_list[i]; RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id, portid); // 显示一下 lcore 和 port 的对应关系 } while (!force_quit) { cur_tsc = rte_rdtsc(); // 获取从开机起至当前的时间戳 /* * TX burst queue drain * 发送逻辑 */ diff_tsc = cur_tsc - prev_tsc; if (unlikely(diff_tsc > drain_tsc)) { // 时间到了 // 若是tx_buffer满,会发送一批 pkt 出去。若是没满,为了保证没有没被发出的 pkt,因此每一个一小段时间,也会发送队列中的包 for (i = 0; i < qconf->n_rx_port; i++) { // 对 lcore 负责的每一个端口 portid = l2fwd_dst_ports[qconf->rx_port_list[i]]; // 与之配对的端口 buffer = tx_buffer[portid]; sent = rte_eth_tx_buffer_flush(portid, 0, buffer); // 将 buffer 里的 pkt 所有从 port id 的 0号 Tx queue 发出去 if (sent) // 返回值是成功发出的 pkt 数量 port_statistics[portid].tx += sent; } /* if timer is enabled */ if (timer_period > 0) { /* advance the timer */ timer_tsc += diff_tsc; /* if timer has reached its timeout */ if (unlikely(timer_tsc >= timer_period)) { /* do this only on master core */ if (lcore_id == rte_get_master_lcore()) { // 若是计时器到了,就打印一下信息。只在主核心打印信息 print_stats(); /* reset the timer */ timer_tsc = 0; } } } prev_tsc = cur_tsc; } /* * Read packet from RX queues * 接收逻辑 */ for (i = 0; i < qconf->n_rx_port; i++) { // 对 lcore 负责的每一个端口 portid = qconf->rx_port_list[i]; // 获取端口号 nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst, MAX_PKT_BURST); // 收包,收到该端口的 0 号 rx queue port_statistics[portid].rx += nb_rx; // 更新端口上的收包计数器 for (j = 0; j < nb_rx; j++) { // 对每个包 m = pkts_burst[j]; // 包的 mbuf 指针 // Prefetch: 预取一个 cache 行。参数是要取的地址,类型 void * // rte_pktmbuf_mtod:返回 mbuf 中 data 的起始地址 rte_prefetch0(rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid); // 收包后进行 L2fwd !! } } } } static int l2fwd_launch_one_lcore(__attribute__((unused)) void *dummy) { l2fwd_main_loop(); return 0; } /* display usage */ static void l2fwd_usage(const char *prgname) { printf("%s [EAL options] -- -p PORTMASK [-q NQ]\n" " -p PORTMASK: hexadecimal bitmask of ports to configure\n" " -q NQ: number of queue (=ports) per lcore (default is 1)\n" " -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default, 86400 maximum)\n" " --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)\n" " When enabled:\n" " - The source MAC address is replaced by the TX port MAC address\n" " - The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID\n", prgname); } static int l2fwd_parse_portmask(const char *portmask) { char *end = NULL; unsigned long pm; /* parse hexadecimal string */ pm = strtoul(portmask, &end, 16); // 将字符串 portmask 转成 16 进制无符号长整形 if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (pm == 0) return -1; return pm; } static unsigned int l2fwd_parse_nqueue(const char *q_arg) { char *end = NULL; unsigned long n; /* parse hexadecimal string */ n = strtoul(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) return 0; if (n == 0) return 0; if (n >= MAX_RX_QUEUE_PER_LCORE) return 0; return n; } static int l2fwd_parse_timer_period(const char *q_arg) { char *end = NULL; int n; /* parse number string */ n = strtol(q_arg, &end, 10); if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0')) return -1; if (n >= MAX_TIMER_PERIOD) return -1; return n; } static const char short_options[] = "p:" /* portmask */ "q:" /* number of queues */ "T:" /* timer period */ ; #define CMD_LINE_OPT_MAC_UPDATING "mac-updating" #define CMD_LINE_OPT_NO_MAC_UPDATING "no-mac-updating" enum { /* long options mapped to a short option */ /* first long only option value must be >= 256, so that we won't * conflict with short options */ CMD_LINE_OPT_MIN_NUM = 256, }; static const struct option lgopts[] = { { CMD_LINE_OPT_MAC_UPDATING, no_argument, &mac_updating, 1}, { CMD_LINE_OPT_NO_MAC_UPDATING, no_argument, &mac_updating, 0}, {NULL, 0, 0, 0} }; /* Parse the argument given in the command line of the application */ static int l2fwd_parse_args(int argc, char **argv) { int opt, ret, timer_secs; char **argvopt; int option_index; char *prgname = argv[0]; // l2fwd argvopt = argv; while ((opt = getopt_long(argc, argvopt, short_options, lgopts, &option_index)) != EOF) { // linux 下解析命令行参数的函数。支持由两个横杠开头的长选项。 // 关于这个函数能够 man getopt_long switch (opt) { // 解析成功时返回字符 /* portmask */ case 'p': // 端口掩码 l2fwd_enabled_port_mask = l2fwd_parse_portmask(optarg); // 解析成功时,将字符后面的参数放到 optarg 里 if (l2fwd_enabled_port_mask == 0) { printf("invalid portmask\n"); l2fwd_usage(prgname); return -1; } break; /* nqueue */ case 'q': // A number of queues (=ports) per lcore (default is 1) // q 后面跟着的数字是每一个逻辑核心上要绑定多少个队列(端口) // 例如 -q 4 意味着该应用使用一个 lcore 轮询 4个端口。若是共有16个端口,则只须要4个lcore l2fwd_rx_queue_per_lcore = l2fwd_parse_nqueue(optarg); if (l2fwd_rx_queue_per_lcore == 0) { printf("invalid queue number\n"); l2fwd_usage(prgname); return -1; } break; /* timer period */ case 'T': timer_secs = l2fwd_parse_timer_period(optarg); if (timer_secs < 0) { printf("invalid timer period\n"); l2fwd_usage(prgname); return -1; } timer_period = timer_secs; break; /* long options */ case 0: // 解析到了长选项 会返回0,长选项形如 --arg=param or --arg param. break; default: l2fwd_usage(prgname); return -1; } } if (optind >= 0) // optind 是 argv 中下一个要被处理的参数的 index argv[optind-1] = prgname; ret = optind-1; optind = 1; /* reset getopt lib */ // 解析完全部的参数要让 optind 从新指向 1 return ret; } /* Check the link status of all ports in up to 9s, and print them finally */ static void check_all_ports_link_status(uint32_t port_mask) { #define CHECK_INTERVAL 100 /* 100ms */ #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ uint16_t portid; uint8_t count, all_ports_up, print_flag = 0; struct rte_eth_link link; printf("\nChecking link status"); fflush(stdout); for (count = 0; count <= MAX_CHECK_TIME; count++) { if (force_quit) return; all_ports_up = 1; RTE_ETH_FOREACH_DEV(portid) { if (force_quit) return; if ((port_mask & (1 << portid)) == 0) continue; memset(&link, 0, sizeof(link)); rte_eth_link_get_nowait(portid, &link); /* print link status if flag set */ if (print_flag == 1) { if (link.link_status) printf( "Port%d Link Up. Speed %u Mbps - %s\n", portid, link.link_speed, (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex\n")); else printf("Port %d Link Down\n", portid); continue; } /* clear all_ports_up flag if any link down */ if (link.link_status == ETH_LINK_DOWN) { all_ports_up = 0; break; } } /* after finally printing all link status, get out */ if (print_flag == 1) break; if (all_ports_up == 0) { printf("."); fflush(stdout); rte_delay_ms(CHECK_INTERVAL); } /* set the print_flag if all ports up or timeout */ if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { print_flag = 1; printf("done\n"); } } } static void signal_handler(int signum) { if (signum == SIGINT || signum == SIGTERM) { printf("\n\nSignal %d received, preparing to exit...\n", signum); force_quit = true; //当咱们退出是ctrl+c不是直接将进程杀死,而是会将force_quit置为true,让程序天然退出,这样程序就来得及完成最后退出以前的操做。 } } int main(int argc, char **argv) { struct lcore_queue_conf *qconf; int ret; uint16_t nb_ports; uint16_t nb_ports_available = 0; uint16_t portid, last_port; unsigned lcore_id, rx_lcore_id; unsigned nb_ports_in_mask = 0; unsigned int nb_lcores = 0; unsigned int nb_mbufs; /* init EAL */ // 解析 EAL 的参数 ret = rte_eal_init(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); argc -= ret; argv += ret; force_quit = false; signal(SIGINT, signal_handler); signal(SIGTERM, signal_handler); /* parse application arguments (after the EAL ones) */ // 解析 l2fwd 的运行参数 ret = l2fwd_parse_args(argc, argv); if (ret < 0) rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n"); printf("MAC updating %s\n", mac_updating ? "enabled" : "disabled"); // 默认开启 mac updating 这一功能。 /* convert to number of cycles */ timer_period *= rte_get_timer_hz(); // 得到CPU主频,单位hz (1s多少个cycle),位于rte_cycles.h nb_ports = rte_eth_dev_count(); // 网口数量 if (nb_ports == 0) rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n"); /* check port mask to possible port mask */ // 检查掩码和可用网口数量是否有冲突 if (l2fwd_enabled_port_mask & ~((1 << nb_ports) - 1)) rte_exit(EXIT_FAILURE, "Invalid portmask; possible (0x%x)\n", (1 << nb_ports) - 1); /* reset l2fwd_dst_ports */ for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) l2fwd_dst_ports[portid] = 0; // 先重置这个数组 last_port = 0; /* * Each logical core is assigned a dedicated TX queue on each port. */ RTE_ETH_FOREACH_DEV(portid) { // 使用RTE_ETH_FOREACH_DEV()宏来访问全部的 ethdev /* skip ports that are not enabled */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; if (nb_ports_in_mask % 2) { l2fwd_dst_ports[portid] = last_port; l2fwd_dst_ports[last_port] = portid; } else last_port = portid; nb_ports_in_mask++; // 这些逻辑能够实现 basicfwd 那样的一对对端口互相转发。 } if (nb_ports_in_mask % 2) { printf("Notice: odd number of ports in portmask.\n"); l2fwd_dst_ports[last_port] = last_port; // 若是是奇数个端口,会有最后一个端口的 dst_port 是本身 } rx_lcore_id = 0; // 从逻辑核心id 0开始 qconf = NULL; /* Initialize the port/queue configuration of each logical core */ // 在每个端口上,配置逻辑核、配置队列。 RTE_ETH_FOREACH_DEV(portid) { /* skip ports that are not enabled */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; /* get the lcore_id for this port */ // 为该端口配置一个逻辑核。 while (rte_lcore_is_enabled(rx_lcore_id) == 0 || lcore_queue_conf[rx_lcore_id].n_rx_port == l2fwd_rx_queue_per_lcore) { /*从lcore id = 0 开始循环: 若是:若是该 lcore id 有效(已经被占用),则检查下一个逻辑核。 若是该 lcore 是空闲的,要检查该 lcore 上绑定了多少个端口,若是到达了最大端口数量限制也会循环。*/ rx_lcore_id++; if (rx_lcore_id >= RTE_MAX_LCORE) // RTE_MAX_LCORE 宏 64 rte_exit(EXIT_FAILURE, "Not enough cores\n"); // 逻辑核心不足 } // 跳出循环时,rx_lcore_id 变量存储了一个可用的 lcore id,绑定该端口到这个 lcore if (qconf != &lcore_queue_conf[rx_lcore_id]) { /* Assigned a new logical core in the loop above. */ qconf = &lcore_queue_conf[rx_lcore_id]; nb_lcores++; // qconf 是一个指针,指向当前进行配置的 lcore 的,用于存放配置信息的结构体 } qconf->rx_port_list[qconf->n_rx_port] = portid; qconf->n_rx_port++; // 绑定就是在这个核处理的端口列表中加上当前这个端口,而后该核绑定的端口数加 1。 printf("Lcore %u: RX port %u\n", rx_lcore_id, portid); } nb_mbufs = RTE_MAX(nb_ports * (nb_rxd + nb_txd + MAX_PKT_BURST + nb_lcores * MEMPOOL_CACHE_SIZE), 8192U); // mbuf中的元素个数,取 8192 和 (端口数 * (队列长度 * 2 + 一个 Burst 的 pkt 数量 + 逻辑核数 * cache size)) 二者中较大的一个。 /* create the mbuf pool */ // 初始化内存池,用于 rx 队列接收 pkt 用 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", nb_mbufs, MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id()); if (l2fwd_pktmbuf_pool == NULL) rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n"); /* Initialise each port */ // 端口初始化 RTE_ETH_FOREACH_DEV(portid) { struct rte_eth_rxconf rxq_conf; // rx queue 的配置信息 struct rte_eth_txconf txq_conf; // tx queue 的配置信息 struct rte_eth_conf local_port_conf = port_conf; // 配置端口时使用的配置信息 struct rte_eth_dev_info dev_info; // 以太网设备的信息 /* skip ports that are not enabled */ if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) { printf("Skipping disabled port %u\n", portid); continue; } nb_ports_available++; /* init port */ printf("Initializing port %u... ", portid); fflush(stdout); // 清除写缓冲区,强迫未写入磁盘的内容当即写入 rte_eth_dev_info_get(portid, &dev_info); // 获取以太网设备信息 if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE) local_port_conf.txmode.offloads |= DEV_TX_OFFLOAD_MBUF_FAST_FREE; // mbuf fast free,支持快速发包 ret = rte_eth_dev_configure(portid, 1, 1, &local_port_conf); // 配置收发队列各 1 条 /*本程序中,Rx队列只能有一条,确保一个 lcore 负责轮询一个 port Tx 队列则能够根据可用的 lcore 数目更改。*/ if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid); ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd, &nb_txd); if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot adjust number of descriptors: err=%d, port=%u\n", ret, portid); rte_eth_macaddr_get(portid,&l2fwd_ports_eth_addr[portid]); // 获取设备的MAC地址,写在后一个结构体里 /* init one RX queue */ // 配置 rx 队列 fflush(stdout); rxq_conf = dev_info.default_rxconf; rxq_conf.offloads = local_port_conf.rxmode.offloads; ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, rte_eth_dev_socket_id(portid), &rxq_conf, l2fwd_pktmbuf_pool); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n", ret, portid); /* init one TX queue on each port */ // 每一个 port 配置一条 tx 队列 fflush(stdout); txq_conf = dev_info.default_txconf; txq_conf.txq_flags = ETH_TXQ_FLAGS_IGNORE; txq_conf.offloads = local_port_conf.txmode.offloads; ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &txq_conf); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, portid); /* Initialize TX buffers */ // 为每一个端口的 Tx 分配发送缓冲区 tx_buffer[portid] = rte_zmalloc_socket("tx_buffer", RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0, rte_eth_dev_socket_id(portid)); // 为 tx buffer 分配空间。 // 宏RTE_ETH_TX_BUFFER_SIZE(x) :计算 tx buffer 的 size,参数x是包的个数 if (tx_buffer[portid] == NULL) rte_exit(EXIT_FAILURE, "Cannot allocate buffer for tx on port %u\n", portid); rte_eth_tx_buffer_init(tx_buffer[portid], MAX_PKT_BURST); // 初始化 Tx buffer,参数是 buffer 指针和 buffer size。 /* rte_eth_tx_buffer_set_err_callback() 对于不能被发送的 pkt 配置回调函数。 在尝试发送一个 tx buffer 的全部 pkt,遇到问题不能所有成功发送,就会触发设置好的回调函数。 默认行为是丢包。若是要其余的行为(例如重传,计数)则须要额外的代码。也有设置好的API例如rte_eth_count_unsent_packet_callback()等,和本函数中用的也是。 参数 1. tx_buffer 指针,2.回调函数的指针。3. 回调函数的参数 */ ret = rte_eth_tx_buffer_set_err_callback(tx_buffer[portid], rte_eth_tx_buffer_count_callback, // 丢包,并更新计数器 &port_statistics[portid].dropped); // 计数器的指针放到第三个参数 if (ret < 0) rte_exit(EXIT_FAILURE, "Cannot set error callback for tx buffer on port %u\n", portid); /* Start device */ // 启用设备 ret = rte_eth_dev_start(portid); if (ret < 0) rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n", ret, portid); printf("done: \n"); rte_eth_promiscuous_enable(portid); // 混杂模式 printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n", portid, l2fwd_ports_eth_addr[portid].addr_bytes[0], l2fwd_ports_eth_addr[portid].addr_bytes[1], l2fwd_ports_eth_addr[portid].addr_bytes[2], l2fwd_ports_eth_addr[portid].addr_bytes[3], l2fwd_ports_eth_addr[portid].addr_bytes[4], l2fwd_ports_eth_addr[portid].addr_bytes[5]); /* initialize port stats */ memset(&port_statistics, 0, sizeof(port_statistics)); } if (!nb_ports_available) { rte_exit(EXIT_FAILURE, "All available ports are disabled. Please set portmask.\n"); } check_all_ports_link_status(l2fwd_enabled_port_mask); // 检查全部链路的状态,能够参考 flow_filtering ret = 0; /* launch per-lcore init on every lcore */ // 这里就是DPDK的典型执行方法,分配全部 lcore 执行函数 rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, NULL, CALL_MASTER); RTE_LCORE_FOREACH_SLAVE(lcore_id) { if (rte_eal_wait_lcore(lcore_id) < 0) { ret = -1; break; } } RTE_ETH_FOREACH_DEV(portid) { if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) continue; printf("Closing port %d...", portid); rte_eth_dev_stop(portid); rte_eth_dev_close(portid); printf(" Done\n"); } printf("Bye...\n"); return ret; }
二层转发和普通的端口转发有什么区别呢?简单来讲有几个:linux
特色 | L2fwd | basicfwd |
---|---|---|
端口数量 | 二者都用端口掩码来指定,L2fwd支持奇数个 | 只能是偶数个 |
lcore数量 | 多个,每一个lcore负责一个port | 一个lcore,执行相似repeater的程序 |
转发逻辑 | 转发时会改写MAC地址 | 只能是 0<-->1,2<-->3 这样的 pair 互相转发 |
Tx_buffer | 有发包缓存队列,收的包会缓存到发包队列里,一段时间后或者队列满后才会转发 | 没有发包缓存,Rx收到包后直接Tx出去 |
root@ubuntu:/home/chang/dpdk/examples/l2fwd/build# ./l2fwd -l 0-3 -n 4 -- -p 0x3EAL: Detected 8 lcore(s) EAL: No free hugepages reported in hugepages-1048576kB EAL: Multi-process socket /var/run/.rte_unix EAL: Probing VFIO support... EAL: PCI device 0000:02:01.0 on NUMA socket -1 EAL: Invalid NUMA socket, default to 0 EAL: probe driver: 8086:100f net_e1000_em EAL: PCI device 0000:02:02.0 on NUMA socket -1 EAL: Invalid NUMA socket, default to 0 EAL: probe driver: 8086:100f net_e1000_em EAL: PCI device 0000:02:03.0 on NUMA socket -1 EAL: Invalid NUMA socket, default to 0 EAL: probe driver: 8086:100f net_e1000_em EAL: PCI device 0000:02:04.0 on NUMA socket -1 EAL: Invalid NUMA socket, default to 0 EAL: probe driver: 8086:100f net_e1000_em MAC updating enabled Lcore 0: RX port 0 Lcore 1: RX port 1 Initializing port 0... done: Port 0, MAC address: 00:0C:29:F7:4D:25 Initializing port 1... done: Port 1, MAC address: 00:0C:29:F7:4D:2F Checking link statusdone Port0 Link Up. Speed 1000 Mbps - full-duplex Port1 Link Up. Speed 1000 Mbps - full-duplex L2FWD: entering main loop on lcore 1 L2FWD: -- lcoreid=1 portid=1 L2FWD: lcore 3 has nothing to do L2FWD: entering main loop on lcore 0 L2FWD: -- lcoreid=0 portid=0 Port statistics ==================================== Statistics for port 0 ------------------------------ Packets sent: 2152346 Packets received: 2166674 Packets dropped: 0 Statistics for port 1 ------------------------------ Packets sent: 2166674 Packets received: 2152371 Packets dropped: 0 Aggregate statistics =============================== Total packets sent: 4319020 Total packets received: 4319045 Total packets dropped: 0 ====================================================
用 wireshark 抓下包:ubuntu
能够看到通过端口转发的包的目的MAC地址被程序改变了。数组
可是改变了目的MAC地址,天然没法通讯。因此这个程序仍是设置成测试速率用。若是把修改目的MAC地址的那一行代码注释掉,就能够正常通讯。缓存
Sample guide 里有一句话说:The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. 因此这个程序也是很是亲民的=。=app
做为典型应用,搜索能搜到不少相关代码阅读的博客。dom
参考了:https://blog.csdn.net/yangye2014/article/details/78064634?locationNum=6&fps=1socket