spark submit参数及调优

spark submit参数介绍
你能够经过spark-submit --help或者spark-shell --help来查看这些参数。
使用格式: 
./bin/spark-submit \
  --class <main-class> \
  --master <master-url> \
  --deploy-mode <deploy-mode> \
  --conf <key>=<value> \
  ... # other options
  <application-jar> \
  [application-arguments]
参数名 格式 参数说明
--master MASTER_URL 如spark://host:port, mesos://host:port, yarn,  yarn-cluster,yarn-client, local
--deploy-mode DEPLOY_MODE Client或者master,默认是client
--class CLASS_NAME 应用程序的主类
--name NAME 应用程序的名称
--jars JARS 逗号分隔的本地jar包,包含在driver和executor的classpath下
--packages 包含在driver和executor的classpath下的jar包逗号分隔的”groupId:artifactId:version”列表
--exclude-packages 用逗号分隔的”groupId:artifactId”列表
--repositories 逗号分隔的远程仓库
--py-files PY_FILES 逗号分隔的”.zip”,”.egg”或者“.py”文件,这些文件放在python app的PYTHONPATH下面
--files FILES 逗号分隔的文件,这些文件放在每一个executor的工做目录下面
--conf PROP=VALUE 固定的spark配置属性,默认是conf/spark-defaults.conf
--properties-file FILE 加载额外属性的文件
--driver-memory MEM Driver内存,默认1G
--driver-java-options 传给driver的额外的Java选项
--driver-library-path 传给driver的额外的库路径
--driver-class-path 传给driver的额外的类路径
--executor-memory MEM 每一个executor的内存,默认是1G
--proxy-user NAME 模拟提交应用程序的用户
--driver-cores NUM Driver的核数,默认是1。这个参数仅仅在standalone集群deploy模式下使用
--supervise Driver失败时,重启driver。在mesos或者standalone下使用
--verbose 打印debug信息
--total-executor-cores NUM 全部executor总共的核数。仅仅在mesos或者standalone下使用
--executor-core NUM 每一个executor的核数。在yarn或者standalone下使用
--driver-cores NUM Driver的核数,默认是1。在yarn集群模式下使用
--queue QUEUE_NAME 队列名称。在yarn下使用
--num-executors NUM 启动的executor数量。默认为2。在yarn下使用
试例:
# Run application locally on 8 cores(本地模式8核)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master local[8] \
  /path/to/examples.jar \
  100
# Run on a Spark standalone cluster in client deploy mode(standalone client模式)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000
# Run on a Spark standalone cluster in cluster deploy mode with supervise(standalone cluster模式使用supervise)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master spark://207.184.161.138:7077 \
  --deploy-mode cluster \
  --supervise \
  --executor-memory 20G \
  --total-executor-cores 100 \
  /path/to/examples.jar \
  1000
# Run on a YARN cluster(YARN cluster模式)
export HADOOP_CONF_DIR=XXX
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master yarn \
  --deploy-mode cluster \  # can be client for client mode
  --executor-memory 20G \
  --num-executors 50 \
  /path/to/examples.jar \
  1000
# Run on a Mesos cluster in cluster deploy mode with supervise(Mesos cluster模式使用supervise)
./bin/spark-submit \
  --class org.apache.spark.examples.SparkPi \
  --master mesos://207.184.161.138:7077 \
  --deploy-mode cluster \
  --supervise \
  --executor-memory 20G \
  --total-executor-cores 100 \
  http://path/to/examples.jar \
  1000
在公司使用最多的是spark on yarn模式,下面主要讲spark on yarn
资源参数调优
所谓的Spark资源参数调优,其实主要就是对Spark运行过程当中各个使用资源的地方,经过调节各类参数,来优化资源使用的效率,从而提高Spark做业的执行性能。
如下参数就是Spark中主要的资源参数,每一个参数都对应着做业运行原理中的某个部分,咱们同时也给出了一个调优的参考值。
num-executors
参数说明:
该参数用于设置Spark做业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽量按照你的设置来在
集群的各个工做节点上,启动相应数量的Executor进程。这个参数很是之重要,若是不设置的话,默认只会给你启动少许的Executor进程,此时你的
Spark做业的运行速度是很是慢的。
参数调优建议:
每一个Spark做业的运行通常设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都很差。设置的太少,没法充分利用集群资源;
设置的太多的话,大部分队列可能没法给予充分的资源。
executor-memory
参数说明:
该参数用于设置每一个Executor进程的内存。Executor内存的大小,不少时候直接决定了Spark做业的性能,并且跟常见的JVM OOM异常,也有直接的关联。
参数调优建议:
每一个Executor进程的内存设置4G~8G较为合适。可是这只是一个参考值,具体的设置仍是得根据不一样部门的资源队列来定。能够看看本身团队的资源队列
的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,若是你是跟团队里其余人共享这个资源队列,
那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你本身的Spark做业占用了队列全部的资源,致使别的同窗的做业没法运行。
executor-cores
参数说明:
该参数用于设置每一个Executor进程的CPU core数量。这个参数决定了每一个Executor进程并行执行task线程的能力。由于每一个CPU core同一时间只能执行一个
task线程,所以每一个Executor进程的CPU core数量越多,越可以快速地执行完分配给本身的全部task线程。
参数调优建议:
Executor的CPU core数量设置为2~4个较为合适。一样得根据不一样部门的资源队列来定,能够看看本身的资源队列的最大CPU core限制是多少,再依据设置的
Executor数量,来决定每一个Executor进程能够分配到几个CPU core。一样建议,若是是跟他人共享这个队列,那么num-executors * executor-cores不要超过
队列总CPU core的1/3~1/2左右比较合适,也是避免影响其余同窗的做业运行。
driver-memory
参数说明:
该参数用于设置Driver进程的内存。
参数调优建议:
Driver的内存一般来讲不设置,或者设置1G左右应该就够了。惟一须要注意的一点是,若是须要使用collect算子将RDD的数据所有拉取到Driver上进行处理,
那么必须确保Driver的内存足够大,不然会出现OOM内存溢出的问题。
spark.default.parallelism
参数说明:
该参数用于设置每一个stage的默认task数量。这个参数极为重要,若是不设置可能会直接影响你的Spark做业性能。
参数调优建议:
Spark做业的默认task数量为500~1000个较为合适。不少同窗常犯的一个错误就是不去设置这个参数,那么此时就会致使Spark本身根据底层HDFS的block数量
来设置task的数量,默认是一个HDFS block对应一个task。一般来讲,Spark默认设置的数量是偏少的(好比就几十个task),若是task数量偏少的话,就会
致使你前面设置好的Executor的参数都前功尽弃。试想一下,不管你的Executor进程有多少个,内存和CPU有多大,可是task只有1个或者10个,那么90%的
Executor进程可能根本就没有task执行,也就是白白浪费了资源!所以Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍
较为合适,好比Executor的总CPU core数量为300个,那么设置1000个task是能够的,此时能够充分地利用Spark集群的资源。
spark.storage.memoryFraction
参数说明:
该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,能够用来保存持久化的RDD数据。根据你选择
的不一样的持久化策略,若是内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
参数调优建议:
若是Spark做业中,有较多的RDD持久化操做,该参数的值能够适当提升一些,保证持久化的数据可以容纳在内存中。避免内存不够缓存全部的数据,致使数据只
能写入磁盘中,下降了性能。可是若是Spark做业中的shuffle类操做比较多,而持久化操做比较少,那么这个参数的值适当下降一些比较合适。此外,若是发现
做业因为频繁的gc致使运行缓慢(经过spark web ui能够观察到做业的gc耗时),意味着task执行用户代码的内存不够用,那么一样建议调低这个参数的值。
spark.shuffle.memoryFraction
参数说明:
该参数用于设置shuffle过程当中一个task拉取到上个stage的task的输出后,进行聚合操做时可以使用的Executor内存的比例,默认是0.2。也就是说,Executor
默认只有20%的内存用来进行该操做。shuffle操做在进行聚合时,若是发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时
就会极大地下降性能。
参数调优建议:
若是Spark做业中的RDD持久化操做较少,shuffle操做较多时,建议下降持久化操做的内存占比,提升shuffle操做的内存占比比例,避免shuffle过程当中数据过多
时内存不够用,必须溢写到磁盘上,下降了性能。此外,若是发现做业因为频繁的gc致使运行缓慢,意味着task执行用户代码的内存不够用,那么一样建议调低
这个参数的值。
资源参数的调优,没有一个固定的值,须要根据本身的实际状况(包括Spark做业中的shuffle操做数量、RDD持久化操做数量以及spark web ui中显示的做业gc状况),
合理地设置上述参数。
资源参数参考示例
如下是一份spark-submit命令的示例,你们能够参考一下,并根据本身的实际状况进行调节:
./bin/spark-submit \
  --master yarn-cluster \
  --num-executors 100 \
  --executor-memory 6G \
  --executor-cores 4 \
  --driver-memory 1G \
  --conf spark.default.parallelism=1000 \
  --conf spark.storage.memoryFraction=0.5 \
  --conf spark.shuffle.memoryFraction=0.3 \
相关文章
相关标签/搜索