<!-- TOC -->python
<!-- /TOC -->算法
- 该项目是针对kaggle中的homesite进行的算法预测,使用xgboost的sklearn接口,进行数据建模,购买预测。
import pandas as pd import numpy as np import xgboost as xgb from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV
train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') train.head()
<div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>QuoteNumber</th> <th>Original_Quote_Date</th> <th>QuoteConversion_Flag</th> <th>Field6</th> <th>Field7</th> <th>Field8</th> <th>Field9</th> <th>Field10</th> <th>Field11</th> <th>Field12</th> <th>...</th> <th>GeographicField59A</th> <th>GeographicField59B</th> <th>GeographicField60A</th> <th>GeographicField60B</th> <th>GeographicField61A</th> <th>GeographicField61B</th> <th>GeographicField62A</th> <th>GeographicField62B</th> <th>GeographicField63</th> <th>GeographicField64</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>2013-08-16</td> <td>0</td> <td>B</td> <td>23</td> <td>0.9403</td> <td>0.0006</td> <td>965</td> <td>1.0200</td> <td>N</td> <td>...</td> <td>9</td> <td>9</td> <td>-1</td> <td>8</td> <td>-1</td> <td>18</td> <td>-1</td> <td>10</td> <td>N</td> <td>CA</td> </tr> <tr> <th>1</th> <td>2</td> <td>2014-04-22</td> <td>0</td> <td>F</td> <td>7</td> <td>1.0006</td> <td>0.0040</td> <td>548</td> <td>1.2433</td> <td>N</td> <td>...</td> <td>10</td> <td>10</td> <td>-1</td> <td>11</td> <td>-1</td> <td>17</td> <td>-1</td> <td>20</td> <td>N</td> <td>NJ</td> </tr> <tr> <th>2</th> <td>4</td> <td>2014-08-25</td> <td>0</td> <td>F</td> <td>7</td> <td>1.0006</td> <td>0.0040</td> <td>548</td> <td>1.2433</td> <td>N</td> <td>...</td> <td>15</td> <td>18</td> <td>-1</td> <td>21</td> <td>-1</td> <td>11</td> <td>-1</td> <td>8</td> <td>N</td> <td>NJ</td> </tr> <tr> <th>3</th> <td>6</td> <td>2013-04-15</td> <td>0</td> <td>J</td> <td>10</td> <td>0.9769</td> <td>0.0004</td> <td>1,165</td> <td>1.2665</td> <td>N</td> <td>...</td> <td>6</td> <td>5</td> <td>-1</td> <td>10</td> <td>-1</td> <td>9</td> <td>-1</td> <td>21</td> <td>N</td> <td>TX</td> </tr> <tr> <th>4</th> <td>8</td> <td>2014-01-25</td> <td>0</td> <td>E</td> <td>23</td> <td>0.9472</td> <td>0.0006</td> <td>1,487</td> <td>1.3045</td> <td>N</td> <td>...</td> <td>18</td> <td>22</td> <td>-1</td> <td>10</td> <td>-1</td> <td>11</td> <td>-1</td> <td>12</td> <td>N</td> <td>IL</td> </tr> </tbody> </table> <p>5 rows × 299 columns</p> </div>dom
train=train.drop('QuoteNumber',axis=1)
test = test.drop('QuoteNumber', axis=1)
时间格式的转化
train['Date']=pd.to_datetime(train['Original_Quote_Date']) train= train.drop('Original_Quote_Date',axis=1)
test['Date']=pd.to_datetime(test['Original_Quote_Date']) test= test.drop('Original_Quote_Date',axis=1)
train['year']=train['Date'].dt.year
train['month']=train['Date'].dt.month train['weekday']=train['Date'].dt.weekday
train.head()
<div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>QuoteConversion_Flag</th> <th>Field6</th> <th>Field7</th> <th>Field8</th> <th>Field9</th> <th>Field10</th> <th>Field11</th> <th>Field12</th> <th>CoverageField1A</th> <th>CoverageField1B</th> <th>...</th> <th>GeographicField61A</th> <th>GeographicField61B</th> <th>GeographicField62A</th> <th>GeographicField62B</th> <th>GeographicField63</th> <th>GeographicField64</th> <th>Date</th> <th>year</th> <th>month</th> <th>weekday</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>B</td> <td>23</td> <td>0.9403</td> <td>0.0006</td> <td>965</td> <td>1.0200</td> <td>N</td> <td>17</td> <td>23</td> <td>...</td> <td>-1</td> <td>18</td> <td>-1</td> <td>10</td> <td>N</td> <td>CA</td> <td>2013-08-16</td> <td>2013</td> <td>8</td> <td>4</td> </tr> <tr> <th>1</th> <td>0</td> <td>F</td> <td>7</td> <td>1.0006</td> <td>0.0040</td> <td>548</td> <td>1.2433</td> <td>N</td> <td>6</td> <td>8</td> <td>...</td> <td>-1</td> <td>17</td> <td>-1</td> <td>20</td> <td>N</td> <td>NJ</td> <td>2014-04-22</td> <td>2014</td> <td>4</td> <td>1</td> </tr> <tr> <th>2</th> <td>0</td> <td>F</td> <td>7</td> <td>1.0006</td> <td>0.0040</td> <td>548</td> <td>1.2433</td> <td>N</td> <td>7</td> <td>12</td> <td>...</td> <td>-1</td> <td>11</td> <td>-1</td> <td>8</td> <td>N</td> <td>NJ</td> <td>2014-08-25</td> <td>2014</td> <td>8</td> <td>0</td> </tr> <tr> <th>3</th> <td>0</td> <td>J</td> <td>10</td> <td>0.9769</td> <td>0.0004</td> <td>1,165</td> <td>1.2665</td> <td>N</td> <td>3</td> <td>2</td> <td>...</td> <td>-1</td> <td>9</td> <td>-1</td> <td>21</td> <td>N</td> <td>TX</td> <td>2013-04-15</td> <td>2013</td> <td>4</td> <td>0</td> </tr> <tr> <th>4</th> <td>0</td> <td>E</td> <td>23</td> <td>0.9472</td> <td>0.0006</td> <td>1,487</td> <td>1.3045</td> <td>N</td> <td>8</td> <td>13</td> <td>...</td> <td>-1</td> <td>11</td> <td>-1</td> <td>12</td> <td>N</td> <td>IL</td> <td>2014-01-25</td> <td>2014</td> <td>1</td> <td>5</td> </tr> </tbody> </table> <p>5 rows × 301 columns</p> </div>测试
test['year']=test['Date'].dt.year test['month']=test['Date'].dt.month test['weekday']=test['Date'].dt.weekday
train = train.drop('Date', axis=1) test = test.drop('Date', axis=1)
查看数据类型
train.dtypes
QuoteConversion_Flag int64 Field6 object Field7 int64 Field8 float64 Field9 float64 Field10 object Field11 float64 Field12 object CoverageField1A int64 CoverageField1B int64 CoverageField2A int64 CoverageField2B int64 CoverageField3A int64 CoverageField3B int64 CoverageField4A int64 CoverageField4B int64 CoverageField5A int64 CoverageField5B int64 CoverageField6A int64 CoverageField6B int64 CoverageField8 object CoverageField9 object CoverageField11A int64 CoverageField11B int64 SalesField1A int64 SalesField1B int64 SalesField2A int64 SalesField2B int64 SalesField3 int64 SalesField4 int64 ... GeographicField50B int64 GeographicField51A int64 GeographicField51B int64 GeographicField52A int64 GeographicField52B int64 GeographicField53A int64 GeographicField53B int64 GeographicField54A int64 GeographicField54B int64 GeographicField55A int64 GeographicField55B int64 GeographicField56A int64 GeographicField56B int64 GeographicField57A int64 GeographicField57B int64 GeographicField58A int64 GeographicField58B int64 GeographicField59A int64 GeographicField59B int64 GeographicField60A int64 GeographicField60B int64 GeographicField61A int64 GeographicField61B int64 GeographicField62A int64 GeographicField62B int64 GeographicField63 object GeographicField64 object year int64 month int64 weekday int64 Length: 300, dtype: object
查看DataFrame的详细信息
train.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 260753 entries, 0 to 260752 Columns: 300 entries, QuoteConversion_Flag to weekday dtypes: float64(6), int64(267), object(27) memory usage: 596.8+ MB
填充缺失值
train = train.fillna(-999) test = test.fillna(-999)
category 数据类型转化
from sklearn import preprocessing features = list(train.columns[1:]) for i in features: if train[i].dtype=='object': le=preprocessing.LabelEncoder() le.fit(list(train[i].values)+list(test[i].values)) train[i] = le.transform(list(train[i].values)) test[i] = le.transform(list(test[i].values))
模型参数设定
#brute force scan for all parameters, here are the tricks #usually max_depth is 6,7,8 #learning rate is around 0.05, but small changes may make big diff #tuning min_child_weight subsample colsample_bytree can have #much fun of fighting against overfit #n_estimators is how many round of boosting #finally, ensemble xgboost with multiple seeds may reduce variance xgb_model = xgb.XGBClassifier() parameters = {'nthread':[4], #when use hyperthread, xgboost may become slower 'objective':['binary:logistic'], 'learning_rate': [0.05,0.1], #so called `eta` value 'max_depth': [6], 'min_child_weight': [11], 'silent': [1], 'subsample': [0.8], 'colsample_bytree': [0.7], 'n_estimators': [5], #number of trees, change it to 1000 for better results 'missing':[-999], 'seed': [1337]}
sfolder = StratifiedKFold(n_splits=5,random_state=42,shuffle=True) clf= GridSearchCV(xgb_model,parameters,n_jobs=4,cv=sfolder.split(train[features], train["QuoteConversion_Flag"]),scoring='roc_auc', verbose=2, refit=True,return_train_score=True) clf.fit(train[features], train["QuoteConversion_Flag"])
Fitting 5 folds for each of 2 candidates, totalling 10 fits [Parallel(n_jobs=4)]: Done 10 out of 10 | elapsed: 2.4min finished GridSearchCV(cv=<generator object _BaseKFold.split at 0x0000000018459888>, error_score='raise', estimator=XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=True, subsample=1), fit_params=None, iid=True, n_jobs=4, param_grid={'nthread': [4], 'objective': ['binary:logistic'], 'learning_rate': [0.05, 0.1], 'max_depth': [6], 'min_child_weight': [11], 'silent': [1], 'subsample': [0.8], 'colsample_bytree': [0.7], 'n_estimators': [5], 'missing': [-999], 'seed': [1337]}, pre_dispatch='2*n_jobs', refit=True, return_train_score=True, scoring='roc_auc', verbose=2)
clf.grid_scores_
c:\anaconda3\envs\nlp\lib\site-packages\sklearn\model_selection\_search.py:761: DeprecationWarning: The grid_scores_ attribute was deprecated in version 0.18 in favor of the more elaborate cv_results_ attribute. The grid_scores_ attribute will not be available from 0.20 DeprecationWarning) [mean: 0.94416, std: 0.00118, params: {'colsample_bytree': 0.7, 'learning_rate': 0.05, 'max_depth': 6, 'min_child_weight': 11, 'missing': -999, 'n_estimators': 5, 'nthread': 4, 'objective': 'binary:logistic', 'seed': 1337, 'silent': 1, 'subsample': 0.8}, mean: 0.94589, std: 0.00120, params: {'colsample_bytree': 0.7, 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight': 11, 'missing': -999, 'n_estimators': 5, 'nthread': 4, 'objective': 'binary:logistic', 'seed': 1337, 'silent': 1, 'subsample': 0.8}]
pd.DataFrame(clf.cv_results_['params'])
<div> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>colsample_bytree</th> <th>learning_rate</th> <th>max_depth</th> <th>min_child_weight</th> <th>missing</th> <th>n_estimators</th> <th>nthread</th> <th>objective</th> <th>seed</th> <th>silent</th> <th>subsample</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.7</td> <td>0.05</td> <td>6</td> <td>11</td> <td>-999</td> <td>5</td> <td>4</td> <td>binary:logistic</td> <td>1337</td> <td>1</td> <td>0.8</td> </tr> <tr> <th>1</th> <td>0.7</td> <td>0.10</td> <td>6</td> <td>11</td> <td>-999</td> <td>5</td> <td>4</td> <td>binary:logistic</td> <td>1337</td> <td>1</td> <td>0.8</td> </tr> </tbody> </table> </div>编码
best_parameters, score, _ = max(clf.grid_scores_, key=lambda x: x[1]) print('Raw AUC score:', score) for param_name in sorted(best_parameters.keys()): print("%s: %r" % (param_name, best_parameters[param_name]))
Raw AUC score: 0.9458947562485674 colsample_bytree: 0.7 learning_rate: 0.1 max_depth: 6 min_child_weight: 11 missing: -999 n_estimators: 5 nthread: 4 objective: 'binary:logistic' seed: 1337 silent: 1 subsample: 0.8 c:\anaconda3\envs\nlp\lib\site-packages\sklearn\model_selection\_search.py:761: DeprecationWarning: The grid_scores_ attribute was deprecated in version 0.18 in favor of the more elaborate cv_results_ attribute. The grid_scores_ attribute will not be available from 0.20 DeprecationWarning)
test_probs = clf.predict_proba(test[features])[:,1] sample = pd.read_csv('sample_submission.csv') sample.QuoteConversion_Flag = test_probs sample.to_csv("xgboost_best_parameter_submission.csv", index=False)
clf.best_estimator_.predict_proba(test[features])
array([[0.6988076 , 0.3011924 ], [0.6787684 , 0.3212316 ], [0.6797658 , 0.32023418], ..., [0.5018287 , 0.4981713 ], [0.6988076 , 0.3011924 ], [0.62464744, 0.37535256]], dtype=float32)
下面的截断值0.5能够本身根据实际的项目设定截断值
kears_result=pd.read_csv('keras_nn_test.csv') result1=[1 if i>0.5 else 0 for i in kears_result['QuoteConversion_Flag']] xgb_result=pd.read_csv('xgboost_best_parameter_submission.csv') result2=[1 if i>0.5 else 0 for i in xgb_result['QuoteConversion_Flag']] from sklearn import metrics metrics.accuracy_score(result1,result2)
0.8566004740099864
metrics.confusion_matrix(result1,result2)
array([[148836, 24862], [ 66, 72]], dtype=int64)
结论
- 对数据的时间进行了预处理
- 对数据中的category类型进行了label化,我以为有必要对这个进行从新考虑,我的以为应该使用one-hot进行category的处理,而不是LabelEncoder处理(疑虑)
- Label encoding在某些状况下颇有用,可是场景限制不少。再举一例:好比有[dog,cat,dog,mouse,cat],咱们把其转换为[1,2,1,3,2]。这里就产生了一个奇怪的现象:dog和mouse的平均值是cat。因此目前尚未发现标签编码的普遍使用。
- 获得的模型对测试集进行处理,Raw AUC 0.94,而对应的准确率只有85%,实际上并无实际的分类效果,对于其实是0的,预测成1的太多了,也就是假阳性过高了,实际中的转换率也不会很高。
- 其实模型还有不少能够调整的参数都没有调整,若是对调参有兴趣的能够查看美团的文本分类项目中的例子。