CoreNLP是由斯坦福大学开源的一套Java NLP工具,提供诸如:词性标注(part-of-speech (POS) tagger)、命名实体识别(named entity recognizer (NER))、情感分析(sentiment analysis)等功能。html
【开源中文分词工具探析】系列:java
\[ P_w(y|x) = \frac{exp \left( \sum_i w_i f_i(x,y) \right)}{Z_w(x)} \]github
其中,\(Z_w(x)\)为归一化因子,\(w\)为模型的参数,\(f_i(x,y)\)为特征函数。数组
如下源码分析基于3.7.0版本,分词示例见SegDemo
类。dom
主要模型文件有两份,一份为词典文件dict-chris6.ser.gz
:函数
// dict-chris6.ser.gz 对应于长度为7的Set数组词典 // 共计词数:0+7323+125336+142252+82139+26907+39243 ChineseDictionary::loadDictionary(String serializePath) { Set<String>[] dict = new HashSet[MAX_LEXICON_LENGTH + 1]; for (int i = 0; i <= MAX_LEXICON_LENGTH; i++) { dict[i] = Generics.newHashSet(); } dict = IOUtils.readObjectFromURLOrClasspathOrFileSystem(serializePath); return dict; }
词典的索引值为词的长度,好比第0个词典中没有词,第1个词典为长度为1的词,第6个词典为长度为6的词。其中,第6个词典为半成词,好比,有词“《双峰》(电”、“80年国家领”、“1824年英”。工具
另外一份为CRF训练模型文件ctb.gz
:源码分析
CRFClassifier::loadClassifier(ObjectInputStream ois, Properties props) { Object o = ois.readObject(); if (o instanceof List) { labelIndices = (List<Index<CRFLabel>>) o; // label索引 } classIndex = (Index<String>) ois.readObject(); // 序列标注label featureIndex = (Index<String>) ois.readObject(); // 特征 flags = (SeqClassifierFlags) ois.readObject(); // 模型配置 Object featureFactory = ois.readObject(); // 特征模板,用于生成特征 else if (featureFactory instanceof FeatureFactory) { featureFactories = Generics.newArrayList(); featureFactories.add((FeatureFactory<IN>) featureFactory); } windowSize = ois.readInt(); // 窗口大小为2 weights = (double[][]) ois.readObject(); // 特征+label 对应的权重 Set<String> lcWords = (Set<String>) ois.readObject(); // Set为空 else { knownLCWords = new MaxSizeConcurrentHashSet<>(lcWords); } reinit(); }
不一样于其余分词器采用B、M、E、S四种label来作分词,CoreNLP的中文分词label只有两种,“1”表示当前字符与前一字符链接成词,“0”则表示当前字符为另外一词的开始——换言以前一字符为上一个词的结尾。测试
class CRFClassifier { classIndex: class edu.stanford.nlp.util.HashIndex ["1","0"] } // 中文分词label对应的类 public static class AnswerAnnotation implements CoreAnnotation<String>{}
CoreNLP的特征以下(示例):
class CRFClassifier { // 特征 featureIndex: class edu.stanford.nlp.util.HashIndex size = 3408491 0=的膀cc2|C 1=身也pc|C 44=LSSLp2spscsc2s|C 45=科背p2p|C 46=迪。cc2|C ... =球-行pc2|CnC =音非cc2|CpC // 权重 weights: double[3408491][2] [[2.2114868426005005E-5, -2.2114868091546352E-5]...] }
特征后缀只有3类:C, CpC, CnC,分别表明了三大类特征;均由特征模板生成:
// 特征模板List featureFactories: ArrayList<FeatureFactory> 0 = Gale2007ChineseSegmenterFeatureFactory // 具体特征模板 Gale2007ChineseSegmenterFeatureFactory::getCliqueFeatures() { if (clique == cliqueC) { addAllInterningAndSuffixing(features, featuresC(cInfo, loc), "C"); } else if (clique == cliqueCpC) { addAllInterningAndSuffixing(features, featuresCpC(cInfo, loc), "CpC"); addAllInterningAndSuffixing(features, featuresCnC(cInfo, loc - 1), "CnC"); } }
特征模板只用到了两个特征簇cliqueC
与cliqueCpC
,其中,cliqueC
由函数featuresC()
实现,cliqueCpC
由函数featuresCpC()
与featuresCnC()
Gale2007ChineseSegmenterFeatureFactory::featuresC() { if (flags.useWord1) { // Unigram 特征 features.add(charc +"::c"); // c[0] features.add(charc2+"::c2"); // c[1] features.add(charp +"::p"); // c[-1] features.add(charp2 +"::p2"); // c[-2] // Bigram 特征 features.add(charc +charc2 +"::cn"); // c[0]c[1] features.add(charc +charc3 +"::cn2"); // c[0]c[2] features.add(charp +charc +"::pc"); // c[-1]c[0] features.add(charp +charc2 +"::pn"); // c[-1]c[1] features.add(charp2 +charp +"::p2p"); // c[-2]c[-1] features.add(charp2 +charc +"::p2c"); // c[-2]c[0] features.add(charc2 +charc +"::n2c"); // c[1]c[0] } // 三个字符c[-1]c[0]c[1]对应的LBeginAnnotation、LMiddleAnnotation、LEndAnnotation 三种label特征 // 结果特征分别以6种形式结尾,"-lb", "-lm", "-le", "-plb", "-plm", "-ple", "-c2lb", "-c2lm", "-c2le" // null || ".../models/segmenter/chinese/dict-chris6.ser.gz" if (flags.dictionary != null || flags.serializedDictionary != null) { dictionaryFeaturesC(CoreAnnotations.LBeginAnnotation.class, CoreAnnotations.LMiddleAnnotation.class, CoreAnnotations.LEndAnnotation.class, "", features, p, c, c2); } // 特征 c[1]c[0], c[1] if (flags.useFeaturesC4gram || flags.useFeaturesC5gram || flags.useFeaturesC6gram) { features.add(charp2 + charp + "p2p"); features.add(charp2 + "p2"); } // Unicode特征 if (flags.useUnicodeType || flags.useUnicodeType4gram || flags.useUnicodeType5gram) { features.add(uTypep + "-" + uTypec + "-" + uTypec2 + "-uType3"); } // UnicodeType特征 if (flags.useUnicodeType4gram || flags.useUnicodeType5gram) { features.add(uTypep2 + "-" + uTypep + "-" + uTypec + "-" + uTypec2 + "-uType4"); } // UnicodeBlock特征 if (flags.useUnicodeBlock) { features.add(p.getString(CoreAnnotations.UBlockAnnotation.class) + "-" + c.getString(CoreAnnotations.UBlockAnnotation.class) + "-" + c2.getString(CoreAnnotations.UBlockAnnotation.class) + "-uBlock"); } // Shape特征 if (flags.useShapeStrings) { if (flags.useShapeStrings1) { features.add(p.getString(CoreAnnotations.ShapeAnnotation.class) + "ps"); features.add(c.getString(CoreAnnotations.ShapeAnnotation.class) + "cs"); features.add(c2.getString(CoreAnnotations.ShapeAnnotation.class) + "c2s"); } if (flags.useShapeStrings3) { features.add(p.getString(CoreAnnotations.ShapeAnnotation.class) + c.getString(CoreAnnotations.ShapeAnnotation.class) + c2.getString(CoreAnnotations.ShapeAnnotation.class) + "pscsc2s"); } if (flags.useShapeStrings4) { features.add(p2.getString(CoreAnnotations.ShapeAnnotation.class) + p.getString(CoreAnnotations.ShapeAnnotation.class) + c.getString(CoreAnnotations.ShapeAnnotation.class) + c2.getString(CoreAnnotations.ShapeAnnotation.class) + "p2spscsc2s"); } if (flags.useShapeStrings5) { features.add(p2.getString(CoreAnnotations.ShapeAnnotation.class) + p.getString(CoreAnnotations.ShapeAnnotation.class) + c.getString(CoreAnnotations.ShapeAnnotation.class) + c2.getString(CoreAnnotations.ShapeAnnotation.class) + c3.getString(CoreAnnotations.ShapeAnnotation.class) + "p2spscsc2sc3s"); } } } Gale2007ChineseSegmenterFeatureFactory::featuresCpC() {} Gale2007ChineseSegmenterFeatureFactory::featuresCnC() {}
三大类特征分别以“|C”为结尾(共计有32个)、以“|CpC”结尾(共计有37个)、以“|CnC”结尾(共计有9个);总计78个特征。我的感受CoreNLP定义的特征过于复杂,大部分特征并无什么用。CoreNLP后面处理流程跟其余分词器别无二样了,求每一个label的权重加权之和,Viterbi解码求解最大几率路径,解析label序列获得分词结果。
CoreNLP分词速度巨慢,效果也通常,在PKU、MSR测试集上的表现以下:
测试集 | 分词器 | 准确率 | 召回率 | F1 |
---|---|---|---|---|
PKU | thulac4j | 0.948 | 0.936 | 0.942 |
CoreNLP | 0.901 | 0.894 | 0.897 | |
MSR | thulac4j | 0.866 | 0.896 | 0.881 |
CoreNLP | 0.822 | 0.859 | 0.840 |
[1] Huihsin, Tseng, et al. "A conditional random field word segmenter." Fourth SIGHAN Workshop. 2005. [2] Chang, Pi-Chuan, Michel Galley, and Christopher D. Manning. "Optimizing Chinese word segmentation for machine translation performance." Proceedings of the third workshop on statistical machine translation. Association for Computational Linguistics, 2008.